Learn More
Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles(More)
Carrier-mediated delivery of drugs into the cytosol is often limited by either release from the carrier or release from an internalizing endolysosome. Here, loading, delivery, and cytosolic uptake of drug mixtures from degradable polymersomes are shown to exploit both the thick membrane of these block copolymer vesicles and their aqueous lumen as well as(More)
A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the(More)
The efficacy of chemotherapy of lung cancer is limited by the development of resistance in cancer cells during treatment. In most lung cancers, this resistance is associated with the overexpression of (a) multidrug resistance-associated protein (MRP) responsible for drug efflux from the cancer cells (pump resistance) and (b) BCL2 protein that activates(More)
The aim of the present work is to synthesize, characterize, and test self-assembled anisotropic or Janus particles designed to load anticancer drugs for lung cancer treatment by inhalation. The particles were synthesized using binary mixtures of biodegradable and biocompatible materials. The particles did not demonstrate cyto- and genotoxic effects. Janus(More)
Image-guided drug delivery (IGDD) is a form of therapy where imaging methods are used in guidance and monitoring of disease location, drug targeting levels, drug localization, and release kinetics before and during treatment. Therefore, a systematic approach to IGDD requires mechanisms for delivery, targeting, activation, and monitoring of the process.(More)
OBJECTIVE Various nanoparticles have been designed and tested in order to select optimal carriers for the inhalation delivery of anticancer drugs to the lungs. METHODS THE FOLLOWING NANOCARRIERS WERE STUDIED: micelles, liposomes, mesoporous silica nanoparticles (MSNs), poly propyleneimine (PPI) dendrimer-siRNA complexes nanoparticles, quantum dots (QDs),(More)
Cystic fibrosis (CF) is an autosomal recessive monogenetic disease that afflicts nearly 70,000 patients worldwide. The mutation results in the accumulation of viscous mucus in multiple organs especially in the lungs, liver and pancreas. High associated morbidity and mortality is caused by CF due to the lack of effective therapies. It is widely accepted that(More)
Design and synthesis of a tumor responsive nanoparticle-based system for imaging and treatment of various cancers. Manganese oxide nanoparticles (Mn3O4 NPs) were synthesized and modified with LHRH targeting peptide or anti-melanoma antibodies (cancer targeting moieties) and a MMP2 cleavable peptide (a possible chemotactic factor). Nanostructured lipid(More)
E2F-1, a key transcription factor necessary for cell growth, DNA repair and differentiation, is an attractive target for development of useful anticancer drugs in tumors that are E2F "oncogene addicted". A peptide, isolated from phage clones, based on its binding to an E2F-1 consensus sequence, was cytotoxic against a wide range of cancer cell lines. The(More)