Tamara M Frank

Learn More
or paired fins (pectoral and pelvic) (Drucker & Lauder, 1999, 2001; Hove et al., 2001; Standen, 2008; Standen & Lauder, 2007). Other species generate thrust primarily by activating body musculature to bend the body and generate waves passing from the head toward the tail (Gillis, 1996; Jayne & Lauder, 1994, 1995c; Lauder & Tytell, 2006; Rome et al., 1993).(More)
Visual temporal resolution and scotopic spectral sensitivity of three coastal shark species (bonnethead Sphyrna tiburo, scalloped hammerhead Sphyrna lewini, and blacknose shark Carcharhinus acronotus) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum(More)
One of the strongest paleontological arguments in favor of the origin of bilaterally symmetrical animals (Bilateria) prior to their obvious and explosive appearance in the fossil record in the early Cambrian, 542 million years ago, is the occurrence of trace fossils shaped like elongated sinuous grooves or furrows in the Precambrian. Being restricted to the(More)
Sunlight is attenuated rapidly in the ocean, resulting in little visually useful light reaching deeper than approximately 1000 m in even the clearest water. To maximize sensitivity to the relatively brighter downwelling sunlight, to view the silhouette of animals above them, and to increase the binocular overlap of their eyes, many mesopelagic animals have(More)
Mesopelagic crustaceans occupy a dim-light environment that is similar to that of nocturnal insects. In a light-limited environment, the requirement for greater sensitivity may result in slower photoreceptor transduction and increased summation time. This should be reflected by a lower temporal resolution, as indicated by a lower critical flicker fusion(More)
The potential for color vision in elasmobranchs has been studied in detail; however, a high degree of variation exists among the group. Evidence for ultraviolet (UV) vision is lacking, despite the presence of UV vision in every other vertebrate class. An integrative physiological approach was used to investigate color and ultraviolet vision in cownose rays(More)
One hundred twenty CTX-M-15-producing Escherichia coli strains isolated in 10 different hospitals from Paris (France), in the Hospital Charles Nicolle in Tunis (Tunisia), and in the Pasteur Institute in Bangui, Central African Republic (CAR), between 2000 and 2004 were studied. Eighty isolates, recovered from the three countries, were clonally related by(More)
Using new collecting techniques with the Johnson-Sea-Link submersible, eight species of deep-sea benthic crustaceans were collected with intact visual systems. Their spectral sensitivities and temporal resolutions were determined shipboard using electroretinography. Useable spectral sensitivity data were obtained from seven species, and in the dark-adapted(More)
The spectral sensitivities of 12 species of mesopelagic crustaceans were studied by means of electrophysiological recordings. Nine of the species are vertical migrators, while 3 are not, and 9 species possess bioluminescent organs, while 3 are not bioluminescent. All species had a single peak of spectral sensitivity with maxima between 470 nm and 500 nm.(More)
Visual temporal resolution and spectral sensitivity of three coastal teleost species (common snook [Centropomus undecimalis], gray snapper [Lutjanus griseus], and pinfish [Lagodon rhomboides]) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum(More)