Tamara Lozano-Fernández

Learn More
UNLABELLED The impact of metal oxide nanoparticles (NPs) on the immune system has been studied in vitro using human peripheral blood lymphocytes (PBLs). Metal oxide NPs (ZnO, CeO2, TiO2 and Al2O3) induced changes in the expression levels of adhesion molecules and the C-X-C chemokine receptor type 4 (CXCR4) in these cells. Proliferation studies were carried(More)
The interaction of nanoparticles (Nps) with body fluids may induce conformational changes in the proteins present in the medium. Such interactions could induce functional loss or important modifications in some proteins, and trigger cellular events induced by the Np-protein moiety. As metal oxide nanoparticles are widely used for various applications, the(More)
Nanoparticles (Nps) can induce toxicity in the lung by accidental or intentional exposure. The main objective of the study reported here was to characterize the effect that four metal oxide Nps (CeO2, TiO2, Al2O3 and ZnO) had at the cellular level on a human lung epithelial cell line. This goal was achieved by studying the capacity of the Nps to activate(More)
Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and(More)
  • 1