Tamara Lozano-Fernández

  • Citations Per Year
Learn More
The interaction of nanoparticles (Nps) with body fluids may induce conformational changes in the proteins present in the medium. Such interactions could induce functional loss or important modifications in some proteins, and trigger cellular events induced by the Np-protein moiety. As metal oxide nanoparticles are widely used for various applications, the(More)
UNLABELLED The impact of metal oxide nanoparticles (NPs) on the immune system has been studied in vitro using human peripheral blood lymphocytes (PBLs). Metal oxide NPs (ZnO, CeO2, TiO2 and Al2O3) induced changes in the expression levels of adhesion molecules and the C-X-C chemokine receptor type 4 (CXCR4) in these cells. Proliferation studies were carried(More)
Nanoparticles (Nps) can induce toxicity in the lung by accidental or intentional exposure. The main objective of the study reported here was to characterize the effect that four metal oxide Nps (CeO2, TiO2, Al2O3 and ZnO) had at the cellular level on a human lung epithelial cell line. This goal was achieved by studying the capacity of the Nps to activate(More)
A microporous magnesium gallate MOF was prepared from highly biocompatible reagents under environmentally friendly conditions. Its slow degradation in physiological fluids leads to the release of gallic acid and hence a high antioxidant activity, which was illustrated in the HL-60 cell line.
Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps) was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO) to study the three most relevant mitogen-activated protein kinase subfamilies and(More)
  • 1