Learn More
Hordeum vulgare L. cv. Bartom seedlings grown on a substrate without or with zeolite were exposed to 450 and 1,000 µmol of Cd(NO3)2. Adding the zeolite to a substrate (+Si) resulted in the accumulation of mono- and polysilicic acids in the leaves, an increase in the growth of seedlings and biomass production, a decrease of the contents of thiobarbituric(More)
Barley (Hordeum vulgare L.) was grown in pots with brown loess soil and highly soluble amorphous silicon dioxide as the source of monosilicic acid to examine its influence on plant growth and adaptive potential under optimal soil watering and flooding. The adaptive potential of plants was estimated by the concentration of the thiobarbituric acid reactive(More)
The extent of damage caused to the photosynthetic machinery of 10-d-old wheat seedlings by short-term exposure to mild heat, their capacity to recover from it and the possible roles of H2O2, SOD, catalase and ascorbate peroxidase on the recovery process were investigated. Seedlings were subjected to heat treatments at 40/42/44 °C for 20 min in the dark and(More)
Bean (Phaseolus vulgaris L. cv. Berbukskaya) seedlings were pre-treated with choline compounds, 19 mM 2-ethyltrimethylammonium chloride (Ch) or 1.6 mM 2-chloroethyltrimethylammonium chloride (CCh), during 24 h, then after 6 d the excised primary leaves were exposed to UV-B and high temperature stress. Chlorophyll (Chl) fluorescence, delayed light emission,(More)
Wheat Triticum aestivum L. cv. “Banti” seeds were treated with magnetic fields (+MF) 30 mT, 50 Hz, 30 s to estimate the influence on seed germination, growth rate of seedlings, and plant tolerance under soil flooding (Fl). MF 30 mT, 50 Hz, 30 s did not stimulate growth processes under optimal soil watering, but flooding suppressed the growth of both (−MF;(More)
Effects of two selenium concentrations—0.4 and 0.8 mg Se6+ per kilogram of soil (treatments Se0.4 and Se0.8)—on seedling growth, chlorophyll content (Chl (a + b)), the content of thiobarbituric acidreactive substances (TBARs) indicative of peroxidation rates, and the activities of antioxidant enzymes (ascorbate peroxidase, AsP; glutathione reductase, GR;(More)
  • 1