Learn More
Anatomically separate fat depots differ in size, function, and contribution to pathological states, such as the metabolic syndrome. We isolated preadipocytes from different human fat depots to determine whether the basis for this variation is partly attributable to differences in inherent properties of fat cell progenitors. We found that genome-wide(More)
Preadipocytes exposed to octanoate accumulate less lipid than cells exposed to long-chain fatty acids. This effect of octanoate involves significant attenuation of expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, steroid regulatory binding element protein (SREBP)-1c and CCAAT element(More)
Preadipocyte differentiation capacity declines between middle and old age. Expression of the adipogenic transcription factors, CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor gamma (PPARgamma), is lower in differentiating preadipocytes from old than young animals, although no age-related changes occur in C/EBPbeta(More)
Osteoarthritis (OA) is the leading form of arthritis in the elderly, causing pain, disability, and immobility. OA has been associated with accumulation of senescent cells in or near joints. However, evidence for a causal link between OA and cellular senescence is lacking. Here, we present a novel senescent cell transplantation model involving injection of(More)
Fat distribution varies among individuals with similar body fat content. Innate differences in adipose cell characteristics may contribute because lipid accumulation and lipogenic enzyme activities vary among preadipocytes cultured from different fat depots. We determined expression of the adipogenic transcription factors peroxisome proliferator activated(More)
Fat depots vary in size, function, and potential contribution to disease. Since fat tissue turns over throughout life, preadipocyte characteristics could contribute to this regional variation. To address whether preadipocytes from different depots are distinct, we produced preadipocyte strains from single abdominal subcutaneous, mesenteric, and omental(More)
In advanced old age, fat depot size declines while lipid is redistributed to muscle, bone marrow, and other tissues. Decreased fat depot size is related to reduced fat cell size and function and impaired differentiation of preadipocytes into fat cells. Reduced differentiation-dependent gene expression results from decreased abundance of the adipogenic(More)
The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which(More)
Fat depots vary in function and size. The preadipocytes that fat cells develop from exhibit distinct regional characteristics that persist in culture. Human abdominal subcutaneous cultured preadipocytes undergo more extensive lipid accumulation, higher adipogenic transcription factor expression, and less TNF-alpha-induced apoptosis than omental(More)
Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells(More)