Learn More
The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices, opening avenues for developing multifunctional molecular spintronics. Such ideas have been researched extensively, using single-molecule magnets and(More)
Abnormal N-heterocyclic carbene (aNHC) adducts of zinc(II) (1) and aluminum(III) (2) were synthesized. The compounds were characterized by NMR spectroscopy and elemental analysis. The solid state structures of these complexes (1 and 2) were determined by single crystal X-ray study. Furthermore, these organozinc and organoaluminum adducts (1 and 2) were(More)
Palladium complexes bearing abnormal N-heterocyclic carbene were used as catalysts in Suzuki-Miyaura cross coupling of aryl chlorides at 25 °C. The catalyst remained active for 10 successive catalytic runs and can activate 4-chlorotoluene at 25 °C with 0.01 mol% catalyst loading resulting in a TON of 9500 within 6 h.
Herein, we report the synthesis and characterization of two organozinc complexes that contain symmetrical phenalenyl (PLY)-based N,N-ligands. The reactions of phenalenyl-based ligands with ZnMe(2) led to the formation of organozinc complexes [N(Me),N(Me)-PLY]ZnMe (1) and [N(iPr),N(iPr)-PLY]ZnMe (2) under the evolution of methane. Both complexes (1 and 2)(More)
Two new water-soluble hetero- and homometallic tetranuclear clusters, Na4[Cu2Zn2(ccdp)2(μ-OH)2]·CH3OH·6H2O (1) and K3[Cu4(ccdp)2(μ-OH)(μ-OH2)]·14H2O (2), have been synthesized in methanol-water at room temperature by exploiting the flexibility, chelating ability, and bridging potential of a carboxylate-rich dinucleating ligand,(More)
We present a static analysis-based technique for reverse engineering finite state machine models from a large subset of sequential Java programs. Our approach enumerates all feasible program paths in a class using symbolic execution and records execution summary for each path. Subsequently, it creates states and transitions by analyzing symbolic execution(More)
We present a method of computing 8 on+turn map for a storage ring. Each element of the lattice is represented by a matrix for a linear element followed by a Lie generator for a nonlinear multipole kick. AU matrices are moved to the front of the lattice and multiplied to form a single matrix. This r&arrangement also changes each nonlinear Lie opera tot by a(More)