Learn More
Hereditary progressive dystonia with marked diurnal fluctuation (HPD) (also known as dopa responsive dystonia) is a dystonia with onset in childhood that shows a marked response without any side effects to levodopa. Recently the gene for dopa responsive dystonia (DRD) was mapped to chromosome 14q. Here we report that GTP cyclohydrolase I is mapped to(More)
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the(More)
Using the reverse transcription-polymerase chain reaction (RT-PCR), we developed a sensitive and quantitative method to detect all four types of human tyrosine hydroxylase (TH) mRNAs in the human brain (substantia nigra). All four types of TH mRNAs were found in the substantia nigra in the control brains examined, and the ratio of type-1, type-2, type-3,(More)
Aneuploidy, a chromosomal numerical abnormality in the conceptus or fetus, occurs in at least 5% of all pregnancies and is the leading cause of early pregnancy loss in humans. Accumulating evidence now suggests that the correct segregation of chromosomes is affected by events occurring in prophase during meiosis I. These events include homologous chromosome(More)
GTP cyclohydrolase I is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in mammals. Previously, we reported three species of human GTP cyclohydrolase I cDNA in a human liver cDNA library (Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T. (1992) Biochem. Biophys. Res. Commun. 187, 359-365). Furthermore, very(More)
Meiotic pachytene checkpoints monitor the failure of homologous recombination and synapsis to ensure faithful chromosome segregation during gamete formation. To date, the molecular basis of the mammalian pachytene checkpoints has remained largely unknown. We here report that mouse HORMAD1 is required for a meiotic prophase checkpoint that eliminates(More)
Meiotic chromosome segregation requires homologous pairing, synapsis and crossover recombination during meiotic prophase. The checkpoint kinase ATR has been proposed to be involved in the quality surveillance of these processes, although the underlying mechanisms remain largely unknown. In our present study, we generated mice lacking HORMAD2, a protein that(More)
Humans produce four different forms of tyrosine hydroxylase (TH) mRNA via alternative splicing of the gene. Here we demonstrate that New- and Old-World monkeys and the gorilla produce only two of the TH isoforms. Comparison among the genomic DNA sequences of various primates revealed that mutations that had accumulated in the genomic DNA created a new exon,(More)
Aromatic-L-amino-acid decarboxylase (AADC) is an enzyme that plays an essential role in synthesizing catecholamines and serotonin in neuronal and endocrine tissues. AADC has also been detected in other nonneuronal tissues including liver and kidney, although its physiological role in nonneuronal tissues has not yet been defined. Previously we have cloned a(More)
There is accumulating evidence to suggest that palindromic AT-rich repeats (PATRRs) represent hot spots of double-strand breakage that lead to recurrent chromosomal translocations in humans. As a mechanism for such rearrangements, we proposed that the PATRR forms a cruciform structure that is the source of genomic instability. To test this hypothesis, we(More)