Learn More
A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with(More)
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural(More)
UNLABELLED Most cellular tasks are performed not by individual proteins, but by groups of functionally associated proteins, often referred to as modules. In a protein association network modules appear as groups of densely interconnected nodes, also called communities or clusters. These modules often overlap with each other and form a network of their own,(More)
The rich set of interactions between individuals in society results in complex community structure, capturing highly connected circles of friends, families or professional cliques in a social network. Thanks to frequent changes in the activity and communication patterns of individuals, the associated social and communication network is subject to constant(More)
The notion of k-clique percolation in random graphs is introduced, where k is the size of the complete subgraphs whose large scale organizations are analytically and numerically investigated. For the Erdos-Rényi graph of N vertices we obtain that the percolation transition of k-cliques takes place when the probability of two vertices being connected by an(More)
We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance(More)
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalysed biochemical reactions, is the most investigated complex intracellular web of molecular interactions. Although the topological organization of individual reactions into metabolic networks is well understood, the principles that govern their(More)
Animals that travel together in groups display a variety of fascinating motion patterns thought to be the result of delicate local interactions among group members. Although the most informative way of investigating and interpreting collective movement phenomena would be afforded by the collection of high-resolution spatiotemporal data from moving(More)
Many natural and social systems develop complex networks that are usually modeled as random graphs. The eigenvalue spectrum of these graphs provides information about their structural properties. While the semicircle law is known to describe the spectral densities of uncorrelated random graphs, much less is known about the spectra of real-world graphs,(More)