Tamás Solymosi

Learn More
Most of the known ecient algorithms designed to compute the nucleolus for special classes of balanced games are based on two facts: (i) in any balanced game, the coalitions which actually determine the nucleolus are essential; and (ii) all essential coalitions in any of the games in the class belong to a prespecied collection of size polynomial in the(More)
Neighbour games arise from certain matching or sequencing situations in which only some specific pairs of players can obtain a positive gain. As a consequence, neighbour games are as well assignment games as line graph restricted games. We will show that the intersection of the class of assignment games and the class of line graph restricted games yields(More)
The class of neighbour games is the intersection of the class of assignment games (cf. Shapley and Shubik (1972)) and the class of component additive games (cf. Curiel et al. (1994)). For assignment games and component additive games there exist polynomially bounded algorithms of order p 4 for calculating the nucleolus, where p is the number of players. In(More)