Learn More
The integrative properties of neurons depend strongly on the number, proportions and distribution of excitatory and inhibitory synaptic inputs they receive. In this study the three-dimensional geometry of dendritic trees and the density of symmetrical and asymmetrical synapses on different cellular compartments of rat hippocampal CA1 area pyramidal cells(More)
The endogenous cannabinoids (endocannabinoids) are lipid molecules that may mediate retrograde signaling at central synapses and other forms of short-range neuronal communication. The monoglyceride 2-arachidonoylglycerol (2-AG) meets several criteria of an endocannabinoid substance: (i) it activates cannabinoid receptors; (ii) it is produced by neurons in(More)
Dentate granule cells communicate with their postsynaptic targets by three distinct terminal types. These include the large mossy terminals, filopodial extensions of the mossy terminals, and smaller en passant synaptic varicosities. We examined the postsynaptic targets of mossy fibers by combining in vivo intracellular labeling of granule cells,(More)
Recent evidence supports the hypothesis of a functional dichotomy of perisomatic inhibition in the cerebral cortex: the parvalbumin- and cholecystokinin-containing basket cells that are specialized to control rhythm (as a clockwork) and "mood" (as a fine-tuning device), respectively, of network oscillations. Pathology extends this conclusion further, as the(More)
The monosynaptic targets of different functional types of geniculocortical axons were compared in the primary visual cortex of monkeys. Single thalamocortical axons were recorded extracellularly in the white matter by using horseradish-peroxidase-filled pipettes. Their receptive fields were mapped and classified as corresponding to those of parvi- or(More)
Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers,(More)
Tyrosine hydroxylase-immunoreactive fibres in the rat neostriatum were studied in the electron microscope in order to determine the nature of the contacts they make with other neural elements. The larger varicose parts of such fibres contained relatively few vesicles and rarely displayed synaptic membrane specializations; however, thinner parts of axons(More)
GABAergic interneurons innervating the perisomatic region of pyramidal cells control population discharge patterns, and thereby all cognitive operations in the cerebral cortex. A striking dichotomy in the function of this interneuron population seems to emerge from the synthesis of recent molecular, anatomical and electrophysiological data. Synaptically and(More)
Endocannabinoid-mediated retrograde signaling exerts powerful control over synaptic transmission in many brain areas. However, in the neocortex, the precise laminar, cellular, and subcellular localization of the type 1 cannabinoid receptor (CB1) as well as its function has been elusive. Here we combined multiple immunolabeling with whole-cell recordings to(More)