Learn More
The endogenous cannabinoids (endocannabinoids) are lipid molecules that may mediate retrograde signaling at central synapses and other forms of short-range neuronal communication. The monoglyceride 2-arachidonoylglycerol (2-AG) meets several criteria of an endocannabinoid substance: (i) it activates cannabinoid receptors; (ii) it is produced by neurons in(More)
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its(More)
To understand the functional significance and mechanisms of action in the CNS of endogenous and exogenous cannabinoids, it is crucial to identify the neural elements that serve as the structural substrate of these actions. We used a recently developed antibody against the CB1 cannabinoid receptor to study this question in hippocampal networks. Interneurons(More)
Dentate granule cells communicate with their postsynaptic targets by three distinct terminal types. These include the large mossy terminals, filopodial extensions of the mossy terminals, and smaller en passant synaptic varicosities. We examined the postsynaptic targets of mossy fibers by combining in vivo intracellular labeling of granule cells,(More)
The integrative properties of neurons depend strongly on the number, proportions and distribution of excitatory and inhibitory synaptic inputs they receive. In this study the three-dimensional geometry of dendritic trees and the density of symmetrical and asymmetrical synapses on different cellular compartments of rat hippocampal CA1 area pyramidal cells(More)
Cannabinoids are the most popular illicit drugs used for recreational purposes worldwide. However, the neurobiological substrate of their mood-altering capacity has not been elucidated so far. Here we report that CB1 cannabinoid receptors are expressed at high levels in certain amygdala nuclei, especially in the lateral and basal nuclei, but are absent in(More)
Hippocampal synaptic inhibition is mediated by distinct groups of inhibitory cells. Some contact pyramidal cells perisomatically, while others terminate exclusively on their dendrites. We examined perisomatic and dendritic inhibition by recording from CA3 inhibitory and pyramidal cells and injecting biocytin to visualize both cells in light and electron(More)
GABAergic interneurons innervating the perisomatic region of pyramidal cells control population discharge patterns, and thereby all cognitive operations in the cerebral cortex. A striking dichotomy in the function of this interneuron population seems to emerge from the synthesis of recent molecular, anatomical and electrophysiological data. Synaptically and(More)
Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers,(More)