Learn More
We have examined the structure and function of Ca2+ channels in excitable endocrine cell types, in rat adrenal glomerulosa cells and in two insulin producing cell types, the rat pancreatic beta cell and the INS-1 cell line. In previous studies on glomerulosa cells, we observed low (T-type) and high threshold (L-type) voltage dependent Ca2+ currents in(More)
ABCC6 encodes MRP6, a member of the ABC protein family with an unknown physiological role. The human ABCC6 and its two pseudogenes share 99% identical DNA sequence. Loss-of-function mutations of ABCC6 are associated with the development of pseudoxanthoma elasticum (PXE), a recessive hereditary disorder affecting the elastic tissues. Various disease-causing(More)
Bisulfite genomic sequencing is the most widely used technique to analyze the 5-methylation of cytosines, the prevalent covalent DNA modification in mammals. The process is based on the selective transformation of unmethylated cytosines to uridines. Then, the investigated genomic regions are PCR amplified, subcloned and sequenced. During sequencing, the(More)
The methylation status of CpG dinucleotides located in or near regulatory elements affects gene expression. The CpG-rich sequence located outside the 5' promoter region of the human Tyrosine Hydroxylase (TH) gene appears to influence the functional effect of the adjacent intronic HUMTH01 microsatellite. In order to identify new regulatory elements in this(More)
Loss-of-function mutations of ABCC6 cause pseudoxanthoma elasticum (PXE). This Mendelian disorder is characterized by elastic calcification leading to dermal, ocular, and cardiovascular symptoms like coronary artery disease (CAD) and stroke. Although PXE is a recessive disease, microscopic dermal lesions, serum alterations, and higher anecdotal incidence of(More)
Recent studies demonstrated that cytosine methylation in the genome can be reversed without DNA replication by enzymatic mechanisms based on base excision-repair pathways. Both enzymatic methylation and demethylation mechanisms are active in the cell nucleus at the same time. One can hypothesize that the actual level of CpG methylation could be the result(More)
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein expressed primarily in the liver and to a lesser extent in the kidneys and the intestines. We review here the mechanisms of this restricted tissue-specific expression and the role of hepatocyte nuclear factor 4α which is responsible for the expression pattern.(More)
Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We(More)
Multiple mechanisms regulate the expression of the tyrosine hydroxylase (Th) gene, which encodes the rate-limiting enzyme in the biosynthesis of catecholamines. Sodium butyrate (SOB), a physiological histone deacetylase (HDAC) inhibitor, was reported to stimulate the Th gene promoter activity in reporter gene assays. However, the expression of the(More)
A large number of PCR primer-design softwares are available online. However, only very few of them can be used for the design of primers to amplify bisulfite-treated DNA templates, necessary to determine genomic DNA methylation profiles. Indeed, the number of studies on bisulfite-treated templates exponentially increases as determining DNA methylation(More)