Learn More
In the Drosophila embryo, the correct association of muscles with their specific tendon cells is achieved through reciprocal interactions between these two distinct cell types. Tendon cell differentiation is initiated by activation of the EGF-receptor signaling pathway within these cells by Vein, a neuregulin-like factor secreted by the approaching myotube.(More)
The recently described adherens junction-specific 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:2249-2260) was localized along cardiac muscle intercalated discs by immunogold labeling of ultrathin frozen sections. Analysis of this labeling indicated that the 135-kD protein, adherens junction-specific cell adhesion(More)
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and(More)
Myotube migration and the formation of muscle attachments are crucial events for the proper development of muscle patterning in the Drosophila embryo. This paper describes the identification of a new embryonic muscle-specific protein, MSP-300, in Drosophila. This protein is initially expressed by muscle precursors at muscle-ectoderm and muscle-muscle(More)
Inductive interactions between cells of distinct fates underlie the basis for morphogenesis and organogenesis across species. In the Drosophila embryo, somatic myotubes form specific interactions with their epidermal muscle attachment (EMA) cells. The establishment of these interactions is a first step toward further differentiation of the EMA cells into(More)
The correct patterning of muscles in the Drosophila embryo depends on the migration of developing muscles over the ectoderm and on the attachment of these muscles to specific attachment sites. We investigate the mechanisms that are involved in this process and describe experiments that allow a genetic dissection of the role of the ectoderm in muscle(More)
The blood brain barrier (BBB) is essential for insulation of the nervous system from the surrounding environment. In Drosophila melanogaster, the BBB is maintained by septate junctions formed between subperineurial glia (SPG) and requires the Moody/G protein-coupled receptor (GPCR) signaling pathway. In this study, we describe novel specialized actin-rich(More)
A Drosophila FGF receptor homolog (DFGF-R2/DFRI) termed Heartless (Htl) is expressed in the embryonic mesoderm. The phenotypes of null mutant embryos demonstrated that Htl is a central player that is required for the development of several mesodermal lineages. No abnormalities in the primary specification of the mesoderm were observed. The first defects(More)
Laminin, an extracellular matrix glycoprotein, has been implicated in a wide array of biological activities. Its specific roles during development, however, remain to be elucidated. In this report we describe the specific contribution of laminin to histogenesis and organogenesis during Drosophila embryogenesis. In particular, the function of laminin during(More)
We describe here the subcellular distributions of three junctional proteins in different adherens-type contacts. The proteins examined include vinculin, talin, and a recently described 135-kD protein (Volk, T., and B. Geiger, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 10:2249-2260). Immunofluorescent localization of the three proteins indicated that while(More)