Learn More
Determination of whether nonhuman primates exhibit neuroanatomical asymmetries would inform our understanding of the evolution of traits in humans that show functional hemispheric dominance, including language and handedness. Here we report the first evidence of population-level asymmetries in the chimpanzee neocortex using voxel-based morphometry (VBM).(More)
Modern neuroimaging technologies allow scientists to uncover interspecies differences and similarities in hemispheric asymmetries that may shed light on the origin of brain asymmetry and its functional correlates. We analyzed asymmetries in ratios of white to grey matter in the lateral aspect of the lobes of the brains of chimpanzees. We found marked(More)
The planum temporale (PT) is the bank of tissue that lies posterior to Heschl's gyrus and is considered a key brain region involved in language and speech in the human brain. In the human brain, both the surface area and grey matter volume of the PT is larger in the left compared to right hemisphere in approximately 2/3rds of individuals, particularly among(More)
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been(More)
Voxel-based morphometry (VBM) has become an increasingly common method for assessing neuroanatomical asymmetries in human in vivo magnetic resonance imaging (MRI). Here, we employed VBM to examine asymmetries in white matter in a sample of 48 chimpanzees (15 males and 33 females). T(1)-weighted MRI scans were segmented into white matter using FSL and(More)
  • 1