Learn More
BACKGROUND The current study examined the neuro-cognitive network of visual word rhyming judgment in 14 children with dyslexia and 14 age-matched control children (8- to 14-year-olds) using functional magnetic resonance imaging (fMRI). METHODS In order to manipulate the difficulty of mapping orthography to phonology, we used conflicting and(More)
The roles of the cerebellum and basal ganglia have typically been confined in the literature to motor planning and control. However, mounting evidence suggests that these structures are involved in more cognitive domains such as language processing. In the current study, we looked at effective connectivity (the influence that one brain region has on(More)
Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age=12.4, range: 8.11-14.10) and 12 control(More)
We used functional magnetic resonance imaging to examine task-specific modulations of effective connectivity within a left-hemisphere language network during spelling and rhyming judgments on visually presented words. We identified sites showing task-specific activations for rhyming in the lateral temporal cortex (LTC) and for spelling in the intraparietal(More)
The current study examined developmental changes in activation and effective connectivity among brain regions during a phonological processing task, using fMRI. Participants, ages 9-15, were scanned while performing rhyming judgments on pairs of visually presented words. The orthographic and phonological similarity between words in the pair was(More)
Neuroimaging studies have suggested that left inferior frontal gyrus, left inferior parietal lobule and left middle temporal gyrus are critical for semantic processing in normal children. The goal of the present functional magnetic resonance imaging (fMRI) study was to determine whether these regions are systematically related to semantic processing in(More)
Age-related differences (9- to 15-year-olds) in the neural correlates of mapping from phonology to orthography were examined with functional magnetic resonance imaging (fMRI). Participants were asked to determine if two spoken words had the same spelling for the rime (corresponding letters after the first consonant or consonant cluster). Some of the word(More)
In a previous study [Cogn. Brain Res. 16 (2003) 325], we found that letter knowledge did not evolve from implicit training on whole-word recognition in an artificial Morse-like script, although the participants were adults, experienced in alphabetical reading. Here we show minimal conditions in which letter knowledge may evolve in some individuals from(More)
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9- to 15-year-old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area(More)
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments in the auditory modality in a group of 9- to 15-year-old children. Subjects were required to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral superior temporal gyri(More)