Learn More
The theoretical work of Braginsky predicted that radiation pressure can couple the mechanical, mirror eigenmodes of a Fabry-Pérot resonator to its optical modes, leading to a parametric oscillation instability. This regime is characterized by regenerative mechanical oscillation of the mechanical mirror eigenmodes. We have recently observed the excitation of(More)
We report the first experimental observation of discrete solitons in an array of optically induced waveguides. The waveguide lattice is induced in real time by illuminating a photorefractive crystal with a pair of interfering plane waves. We demonstrate two types of bright discrete solitons: in-phase self-localized states and the staggered (pi out-of-phase)(More)
As stability and continuous operation are important for almost any use of a microcavity, we demonstrate here experimentally and theoretically a self-stable equilibrium solution for a pump-microcavity system. In this stable equilibrium, intensity- and wavelength-perturbations cause a small thermal resonant-drift that is enough to compensate for the(More)
We analyze experimentally and theoretically mechanical oscillation within an optical cavity stimulated by the pressure of circulating optical radiation. The resulting radio frequency cavity vibrations (phonon mode) cause modulation of the incident, continuous-wave (cw) input pump beam. Furthermore, with increasing cw pump power, an evolution from sinusoidal(More)
We present an experimental study on wave propagation in highly nonlocal optically nonlinear media, for which far-away boundary conditions significantly affect the evolution of localized beams. As an example, we set the boundary conditions to be anisotropic and demonstrate the first experimental observation of coherent elliptic solitons. Furthermore,(More)
Nonlinear harmonic generation is widely used to extend the emission wavelength of laser sources. These devices typically require high peak powers to generate sufficient nonlinear optical response. Here, we demonstrate experimentally and analyse theoretically continuous-wave, visible emission from a silica microresonator on a silicon chip by third-harmonic(More)
We report on an opto-mechanical resonator with vibration excited by compressive radiation pressure via stimulated Brillouin scattering [SBS]. We experimentally excite a mechanical whispering-gallery mode (WGM) from an optical WGM and detect vibration via the red Doppler shifted (Stokes) light it scatters. We numerically solve the stress-strain equation to(More)
As Q factor is boosted in microscale optical resonant systems there will be a natural tendency for these systems to experience a radiation-pressure induced instability. The instability is manifested as a regenerative oscillation (at radio frequencies) of the mechanical modes of the microcavity. The first observation of this radiation-pressure-induced(More)
The coherence of waves in periodic systems (lattices) is crucial to their dynamics, as interference effects, such as Bragg reflections, largely determine their propagation. Whereas linear systems allow superposition, nonlinearity introduces a non-trivial interplay between localization effects, coupling between lattice sites, and incoherence. Until recently,(More)
3 in microcavities 7 has allowed access to low-frequency acoustical modes where mechanical dissipation is lower than optical dissipation, in accordance with the requirements for cooling 8. Here we experimentally demonstrate cooling via such a forward Brillouin process in a microresonator. We show two regimes of operation for the electrostrictive Brillouin(More)