Learn More
The theoretical work of Braginsky predicted that radiation pressure can couple the mechanical, mirror eigenmodes of a Fabry-Pérot resonator to its optical modes, leading to a parametric oscillation instability. This regime is characterized by regenerative mechanical oscillation of the mechanical mirror eigenmodes. We have recently observed the excitation of(More)
We report the first experimental observation of discrete solitons in an array of optically induced waveguides. The waveguide lattice is induced in real time by illuminating a photorefractive crystal with a pair of interfering plane waves. We demonstrate two types of bright discrete solitons: in-phase self-localized states and the staggered (pi out-of-phase)(More)
We analyze experimentally and theoretically mechanical oscillation within an optical cavity stimulated by the pressure of circulating optical radiation. The resulting radio frequency cavity vibrations (phonon mode) cause modulation of the incident, continuous-wave (cw) input pump beam. Furthermore, with increasing cw pump power, an evolution from sinusoidal(More)
As Q factor is boosted in microscale optical resonant systems there will be a natural tendency for these systems to experience a radiation-pressure induced instability. The instability is manifested as a regenerative oscillation (at radio frequencies) of the mechanical modes of the microcavity. The first observation of this radiation-pressure-induced(More)
As stability and continuous operation are important for almost any use of a microcavity, we demonstrate here experimentally and theoretically a self-stable equilibrium solution for a pump-microcavity system. In this stable equilibrium, intensity- and wavelength-perturbations cause a small thermal resonant-drift that is enough to compensate for the(More)
We analyze experimentally and theoretically >1 GHz optoexcited mechanical vibration in an on-chip micron-scaled sphere. Different eigen-mechanical modes are excited upon demand by the centrifugal radiation pressure of the optical whispering-gallery-mode, enabling an optomechanical modal spectroscopy investigation of many vibrational modes. Spectral analysis(More)
The coherence of waves in periodic systems (lattices) is crucial to their dynamics, as interference effects, such as Bragg reflections, largely determine their propagation. Whereas linear systems allow superposition, nonlinearity introduces a non-trivial interplay between localization effects, coupling between lattice sites, and incoherence. Until recently,(More)
We formulate the theory describing the evolution and interactions between optical spatial solitons that propagate in opposite directions. We show that coherent collisions between counterpropagating solitons give rise to a new focusing mechanism resulting from the interference between the beams, and that interactions between such solitons are insensitive to(More)
Radiation pressure can couple the mechanical modes of an optical cavity structure to its optical modes, leading to parametric oscillation instability. This regime is characterized by regenerative oscillation of the mechanical cavity eigenmodes. Here, we present the first observation of this effect with a detailed theoretical and experimental analysis of(More)
We report on an opto-mechanical resonator with vibration excited by compressive radiation pressure via stimulated Brillouin scattering [SBS]. We experimentally excite a mechanical whispering-gallery mode (WGM) from an optical WGM and detect vibration via the red Doppler shifted (Stokes) light it scatters. We numerically solve the stress-strain equation to(More)