Learn More
The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of(More)
We combine kinship estimates with traditional F-statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range-wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST(More)
Epidemiological theory suggests that pathogens will not cause host extinctions because agents of disease should fade out when the host population is driven below a threshold density. Nevertheless, infectious diseases have threatened species with extinction on local scales by maintaining high incidence and the ability to spread efficiently even as host(More)
Fish populations vary geographically in demography and life history due to environmental and ecological processes and in response to exploitation. However, population dynamic models and stock assessments, used to manage fisheries, rarely explicitly incorporate spatial variation to inform management decisions. Here, we describe extensive geographic variation(More)
An intracellular bacterium Candidatus Xenohaliotis californiensis, also called Withering-Syndrome Rickettsia-Like Organism (WS-RLO), is the cause of mass mortalities that are the chief reason for endangerment of black abalone (Haliotis cracherodii). Using a real-time PCR assay, we found that a shore-based abalone farm (AF) in Santa Barbara, CA, USA(More)
Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between(More)
Suspension-feeding bivalve molluscs are confronted with a wide range of materials in the benthic marine environment. These materials include various sized plankton and the organic material derived from it, macroalgae, detritus and a diversity of microbial parasites that have adapted life stages to survive in the water column. For bivalve parasites to infect(More)
Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities(More)
We mapped current and future temperature suitability for malaria transmission in Africa using a published model that incorporates nonlinear physiological responses to temperature of the mosquito vector Anopheles gambiae and the malaria parasite Plasmodium falciparum. We found that a larger area of Africa currently experiences the ideal temperature for(More)
The assumption that vector mortality remains constant with age is used widely to assess malaria transmission risk and predict the public health consequences of vector control strategies. However, laboratory studies commonly demonstrate clear evidence of senescence, or a decrease in physiological function and increase in vector mortality rate with age.(More)
  • 1