Takuya S Den

  • Citations Per Year
Learn More
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar(More)
The gas-phase rotational motion of hexafluorobenzene has been measured in real time using femtosecond (fs) time-resolved rotational Raman coherence spectroscopy (RR-RCS) at T = 100 and 295 K. This four-wave mixing method allows to probe the rotation of non-polar gas-phase molecules with fs time resolution over times up to ∼5 ns. The ground state rotational(More)
The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm(–1) resolution. The 0(0)(0) rotational band contour is polarized in-plane, implying that the electronic transition is (1)ππ*. The electronic(More)
p-Dioxane is non-polar, hence its rotational constants cannot be determined by microwave rotational coherence spectroscopy (RCS). We perform high-resolution gas-phase rotational spectroscopy of para-dioxane-h8 and -d8 using femtosecond time-resolved Raman RCS in a gas cell at T = 293 K and in a pulsed supersonic jet at T∼130 K. The inertial tensor of(More)
  • 1