Learn More
Fertilization is a matter of life or death. In animals of sexual reproduction, the appropriate communication between mature and competent male and female gametes determines the generation of a new individual. Ion channels are key elements in the dialogue between sperm, its environment, and the egg. Components from the outer layer of the egg induce ion(More)
Marine invertebrate oocytes establish chemoattractant gradients that guide spermatozoa towards their source. In sea urchin spermatozoa, this relocation requires coordinated motility changes initiated by Ca(2+)-driven alterations in sperm flagellar curvature. We discovered that Lytechinus pictus spermatozoa undergo chemotaxis in response to speract, an(More)
Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its(More)
Ion channels and transporters, key elements in sperm-egg signaling and environmental sensing, are essential for fertilization. External cues and components from the outer envelopes of the egg influence sperm ion permeability and behavior. Combining in vivo measurements of membrane potential, intracellular ions, and second messengers with new molecular(More)
Generating new life in animals by sexual reproduction depends on adequate communication between mature and competent male and female gametes. Ion channels are instrumental in the dialogue between sperm, its environment, and the egg. The ability of sperm to swim to the egg and fertilize it is modulated by ion permeability changes induced by environmental(More)
Sperm chemotaxis is a long-term puzzle and most of our knowledge comes from studying marine animals that are external fertilizers. Sperm are attracted by diffusible chemical factors (chemoattractants) released from the egg which redirect their swimming paths towards their source. This redirection is driven by increases in flagellar curvature that correlate(More)
Speract, a decapeptide from sea urchin egg jelly, induces various sperm responses. Stopped-flow fluorometry was used to examine the binding of labeled speract and the intracellular changes in pH (pH(i)) and Ca2+ ([Ca2+]i) it induces in sperm. We observed significant time delays for the increase in pH(i) and [Ca2+]i induced by 200 nM speract (69 and 190 ms,(More)
Progesterone is a physiological agonist for mammalian sperm, modulating its flagellar movement and facilitating the acrosome reaction. To study the initial action of progesterone, we developed a caged analog with a photosensitive group: nitrophenylethanediol, at position 20. Using this compound combined with stroboscopic illumination, we performed Ca(2)(+)(More)
Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca(2+). We used stroboscopic fluorescence imaging to measure intracellular Ca(2+) concentration ([Ca(2+)]i) in the flagella(More)
Lytechinus pictus sea urchin sperm express receptors for speract, a sperm-activating peptide derived from the homologous egg jelly coat. We found that the fluorescence of fluorophore-labeled, active, speract analogs is quenched upon receptor binding. This property allowed us to perform real-time measurements of speract-receptor interactions using intact(More)