Takuya Nihira

Learn More
Many streptomycetes produce extracellular gamma-butyrolactones. In several cases, these have been shown to act as signals for the onset of antibiotic production. Synthesis of these molecules appears to require a member of the AfsA family of proteins (AfsA is required for A-factor synthesis of the gamma-butyrolactone A-factor and consequently for(More)
IM-2 [(2R,3R,1'R)-2-1'-hydroxybutyl-3-hydroxymethyl gamma-butanolide] is a gamma-butyrolactone autoregulator which, in Streptomyces lavendulae FRI-5, switches off the production of D-cycloserine but switches on the production of a blue pigment and several nucleoside antibiotics. To clarify the in vivo function of an IM-2-specific receptor (FarA) in the IM-2(More)
Citrinin produced by Aspergillus, Penicillium, and Monascus species is a polyketide compound that has nephrotoxic activity in mammals and is bactericidal toward gram-positive bacteria. To avoid the risk of citrinin contamination in other fermentation products produced by Monascus purpureus, knowledge of the citrinin biosynthetic genes is needed so that(More)
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl(More)
Virginiae butanolide C, [2-(1'-hydroxyhexyl)-3-(hydroxymethyl)butanolide (3)], is one of the inducers of virginiamycin production in Streptomyces virginiae. Various racemic analogues were synthesized, and their effectiveness in virginiamycin induction was studied. Among analogues having a series of C-2 side chains, those with 1'-hydroxyheptyl or(More)
FarA of Streptomyces lavendulae FRI-5 is a specific receptor protein for IM-2, a butyrolactone autoregulator that controls the production of a blue pigment and the nucleoside antibiotics showdomycin and minimycin. Gel shift assays demonstrated that FarA binds to the farA upstream region and that this binding is abolished in the presence of IM-2. The FarA(More)
Gamma-butyrolactone signalling molecules are produced by many Streptomyces species, and several have been shown to regulate antibiotic production. In Streptomyces coelicolor A3(2) at least one gamma-butyrolactone (SCB1) has been shown to stimulate antibiotic production, and genes encoding proteins that are involved in its synthesis (scbA) and binding (scbR)(More)
IM-2 is a butyrolactone autoregulator that controls production of blue pigment and nucleoside antibiotics in Streptomyces sp. strain FRI-5. An IM-2-specific receptor gene, farA, was cloned from strain FRI-5, and nucleotide sequencing revealed that the farA gene consists of 666 bp encoding a 221-amino-acid protein of 24.3 kDa with an NH2-terminal amino acid(More)
Early stationary phase culture supernatants of Streptomyces coelicolor A3(2) contained at least four small diffusible signaling molecules that could elicit precocious antibiotic synthesis in the producing strain. The compounds were not detected in exponentially growing cultures. One of these compounds, SCB1, was purified to homogeneity and shown to be a(More)
Recombinant adeno-associated viral (rAAV) vector-mediated overexpression of alpha-synuclein (alphaSyn) protein has been shown to cause neurodegeneration of the nigrostriatal dopaminergic pathway in rodents and primates. Using serotype-2 rAAV vectors, we recently reported the protective effect of Parkin on alphaSyn-induced nigral dopaminergic(More)