Learn More
ABA is a major phytohormone that regulates a broad range of plant traits and is especially important for adaptation to environmental conditions. Our understanding of the molecular basis of ABA responses in plants improved dramatically in 2009 and 2010, banner years for ABA research. There are three major components; PYR/PYL/ RCAR (an ABA receptor), type 2C(More)
The phytohormone abscisic acid (ABA) mediates the adaptation of plants to environmental stresses such as drought and regulates developmental signals such as seed maturation. Within plants, the PYR/PYL/RCAR family of START proteins receives ABA to inhibit the phosphatase activity of the group-A protein phosphatases 2C (PP2Cs), which are major negative(More)
Signalling via calcium is probably involved in regulating eukaryotic cell proliferation, but details of its mechanism of action are unknown. In Schizosaccharomyces pombe, the onset of mitosis is determined by activation of a complex of the p34cdc2 protein kinase and a cyclin protein that is specific to the G2 phase of the cell cycle. This activation(More)
BACKGROUND Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established. METHODOLOGY/PRINCIPAL FINDINGS We investigated the relationship between mtDNA mutations and(More)
BACKGROUND Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. PRINCIPAL FINDINGS In this study, we show that the coenzyme NAD(+), known to play a(More)
A secretory defect causes specific transcriptional repression of both ribosomal protein and ribosomal RNA genes, suggesting the coupling of plasma membrane and ribosome syntheses. We previously reported that the rap1-17 allele, which produced C-terminally truncated Rap1p, derepressed transcription of ribosomal protein genes when the secretory pathway was(More)
To identify the genes involved in cell morphogenesis in Schizosaccharomyces pombe, we screened for the genes that cause aberrant cell morphology by overexpression. The isolated genes were classified on the basis of morphology conferred. One of the genes causing a rounded morphology was identified as the rho2+ gene encoding a small GTP-binding protein. The(More)
Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new(More)
RNA interference (RNAi) is an evolutionally conserved posttranscriptional gene-silencing mechanism whereby small interfering RNA (siRNA) triggers sequence-specific cleavage of its cognate mRNA. Dicer, Argonaute (Ago), and either TAR-RNA binding protein (TRBP) or a protein activator of PKR (PACT) are the primary components of the RNAi pathway, and they(More)
Human reticulocalbin-1 (hRCN1) has six EF-hand motifs and binds Ca(2+). hRCN1 is a member of the CREC family localized in the secretory pathway, and its cellular function remains unclear. In this study, we established a new bacterial expression and purification procedure for hRCN1. We observed that hRCN1 binds Ca(2+) in a cooperative manner and the Ca(2+)(More)