Takuya Ishida

Learn More
Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a(More)
The basidiomycete Phanerochaete chrysosporium produces xyloglucanase Xgh74B, which has the glycoside hydrolase (GH) family 74 catalytic domain and family 1 carbohydrate-binding module, in cellulose-grown culture. The recombinant enzyme, which was heterologously expressed in the yeast Pichia pastoris, had high hydrolytic activity toward xyloglucan from(More)
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO(More)
Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on(More)
Methylumbelliferyl-β-cellobioside (MUF-G2) is a convenient fluorogenic substrate for certain β-glycoside hydrolases (GH). However, hydrolysis of the aglycone is poor with GH family 6 enzymes (GH6), despite strong binding. Prediction of the orientation of the aglycone of MUF-G2 in the +1 subsite of Hypocrea jecorina Cel6A by automated docking suggested(More)
Glycoside hydrolase family 55 consists of beta-1,3-glucanases mainly from filamentous fungi. A beta-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes beta-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from beta-1,3/1,6-glucans. Here we report the(More)
Termites and their symbiotic protists have established a prominent dual lignocellulolytic system, which can be applied to the biorefinery process. One of the major components of lignocellulose from conifers is glucomannan, which comprises a heterogeneous combination of β-1,4-linked mannose and glucose. Mannanases are known to hydrolyze the internal linkage(More)
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal(More)
It has recently been shown that noise can improve the detection of stimuli in several sensory modalities. We herein investigated whether visual contrast detection sensitivity can be improved by adding a certain amount of noise. The contrast detection thresholds of a light changing brightness periodically were measured either with or without overlapping(More)
This study developed a method for the simultaneous determination of erlotinib and its isomeric major metabolites, OSI-413 and OSI-420, in human plasma using an isocratic liquid chromatography-tandem mass spectrometry. Plasma specimens deproteinized with acetonitrile were separated using a 3-µm particle size octadecylsilyl column. The m/z values of the(More)