Learn More
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex(More)
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The(More)
We improved a motility assay system by using an affinity-purified antibody against the C-terminal globular domain of characean myosin. This improvement allowed us to study the sensitivity to ionic strength or the processivity of characean myosin. The sliding velocity of actin filaments on a characean myosin-coated surface was unaffected by ionic strength.(More)
Neuronal activity has an impact on beta cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-beta peptide (Abeta). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of beta cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains.(More)
The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin(More)
G-protein-coupled receptors (GPCRs) may form heteromeric complexes and cooperatively mediate cellular responses. Although heteromeric GPCR complexes are suggested to occur in many neurons, their contribution to neuronal function remains unclear. We address this question using two GPCRs expressed in cerebellar Purkinje cells: adenosine A1 receptor (A1R),(More)
Chloramphenicol was instilled into rabbit eyes and five days later the corneal surface was examined by scanning electron microscopy. The corneal surface was roughened and showed a proliferative appearance. Examination of thin sections of the cornea by transmission electron microscope showed that the corneal surface stained strongly with alcian blue. It was(More)
A long alpha-helix in myosin head constitutes a lever arm together with light chains. It is known from X-ray crystallographic studies that the first three turns of this lever arm alpha-helix are inserted into the converter region of myosin. We previously showed that chimeric Chara myosin in which the motor domain of Chara myosin was connected to the lever(More)