Taku Kambayashi

Learn More
Dendritic cells, macrophages and B cells are regarded as the classical antigen-presenting cells of the immune system. However, in recent years, there has been a rapid increase in the number of cell types that are suggested to present antigens on MHC class II molecules to CD4(+) T cells. In this Review, we describe the key characteristics that define an(More)
Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are 2 similar diseases characterized by a cytokine storm, overwhelming inflammation, multiorgan dysfunction, and death. Animal models of HLH suggest that disease is driven by IFN-γ produced by CD8⁺ lymphocytes stimulated by persistent antigen exposure. In these models and(More)
CD4(+) T-helper type 2 (T(H)2) cells, characterized by their expression of interleukin (IL)-4, IL-5, IL-9 and IL-13, are required for immunity to helminth parasites and promote the pathological inflammation associated with asthma and allergic diseases. Polymorphisms in the gene encoding the cytokine thymic stromal lymphopoietin (TSLP) are associated with(More)
CD4(+) T helper 2 (T(H)2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, T(H)2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal lymphopoietin, IL33 and IL25 (also known as IL17E)(More)
In addition to their well-established role as regulators of allergic response, recent evidence supports a role for mast cells in influencing the outcome of physiologic and pathologic T cell responses. One mechanism by which mast cells (MCs) influence T cell function is indirectly through secretion of various cytokines. It remains unclear, however, whether(More)
Through their differential interactions with B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL), the three BLyS family receptors play central roles in B cell survival and differentiation. Recent evidence indicates BLyS receptor levels shift following BCR ligation, suggesting that activation cues can alter overall BLyS receptor(More)
Regulatory T cells (Tregs) are a subset of T cells with suppressive function that protect the host from autoimmunity and prevent excessive immunopathology. Functional Tregs must be present throughout life to provide continuous protection for the host. Despite the intense study of this lineage, the mechanisms by which Tregs are maintained in the steady-state(More)
Strategies to expand regulatory T cells hold therapeutic potential for ameliorating T cell-mediated autoimmunity. Recently, we reported that the requirements for T cell receptor signaling in conventional T cell and regulatory T cell proliferation are different. Using mutant mice that display defective T cell receptor-mediated phospholipase Cγ (PLCγ)(More)
It is generally thought that mast cells influence T-cell activation nonspecifically through the release of inflammatory mediators. In this report, we provide evidence that mast cells may also affect antigen-specific T-cell responses by internalizing immunoglobulin E-bound antigens for presentation to antigen-specific T cells. Surprisingly, T-cell activation(More)
We established a diphtheria toxin (DT)-based conditional deletion system using Il4 enhancer elements previously shown to be specific for IL-4 production in mast cells (MCs) or basophils (Mas-TRECK and Bas-TRECK mice). DT treatment of Bas-TRECK mice resulted in specific deletion of basophils, whereas both MCs and basophils were deleted in Mas-TRECK mice.(More)