Learn More
Our laboratory has recently demonstrated that low-frequency electrical stimulation (ES) of quadriceps muscles alone significantly enhanced glucose disposal rate (GDR) during euglycemic clamp (Hamada T, Sasaki H, Hayashi T, Moritani T, and Nakao K. J Appl Physiol 94: 2107-2112, 2003). The present study is further follow-up to examine the acute metabolic(More)
Caffeine (1,3,7-trimethylxanthine) has been implicated in the regulation of glucose and lipid metabolism including actions such as insulin-independent glucose transport, glucose transporter 4 expression, and fatty acid utilization in skeletal muscle. These effects are similar to the exercise-induced and 5'adenosine monophosphate-activated protein kinase(More)
The present study is designed to investigate how and to what extent sympathovagal behavior in a balanced low-calorie diet relates to favorable changes of body mass, waist circumference, and/or metabolic risk factors. The study involved 28 mildly obese women without clinical complications, who underwent an 8-week calorie restriction program using a(More)
The purpose of the present study was to determine whether reaction time (RT) for the peripheral visual field increases at exercise intensity above the ventilatory threshold (VT) during incremental exercise and to examine the relationship between aerobic capacity and the extent of increase in the RT. Nine healthy subjects performed a simple manual RT task(More)
There is considerable evidence to suggest that electrical stimulation (ES) activates glucose uptake in rodent skeletal muscle. It is, however, unknown whether ES can lead to similar metabolic enhancement in humans. We employed low-frequency ES through surface electrodes placed over motor points of quadriceps femoris muscles. In male subjects lying in the(More)
The brain is capable of oxidizing lactate and ketone bodies through monocarboxylate transporters (MCTs). We examined the protein expression of MCT1, MCT2, MCT4, glucose transporter 1 (GLUT1), and cytochrome-c oxidase subunit IV (COX IV) in the rat brain within 24 h after a single exercise session. Brain samples were obtained from sedentary controls and(More)
The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min(More)
A single bout of exercise increases the rate of muscle glucose transport (GT) by both insulin-independent and insulin-dependent mechanisms. The purpose of this study was to determine whether high-fat diet (HFD) feeding interferes with the metabolic activation induced by moderate-intensity endurance exercise. Rats were fed an HFD or control diet (CD) for 4(More)
Uncoupling protein 3 (UCP3) is considered to be associated with obesity, given its function in the regulation of energy and lipid metabolism. An increased body mass index (BMI) and a decreased level of high-density lipoprotein cholesterol (HDL-C) are risk factors for cardiovascular disease. The purpose of this study was to investigate whether the UCP3(More)
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with(More)