Learn More
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new(More)
Enterococcus mundtii QU 25, a newly isolated lactic acid bacterium, efficiently metabolized xylose into l-lactate. In batch fermentations, the strain produced 964 mM l-(+)-lactate from 691 mM xylose, with a yield of 1.41 mol/mol xylose consumed and an extremely high optical purity of ≥99.9% without acetate production.
Lactococcus lactis 61-14 isolated from river water produced a bacteriocin active against a wide range of Gram-positive bacteria. N-terminal amino acid sequencing, mass spectral analysis of the purified bacteriocin, and genetic analysis using nisin-specific primers showed that the bacteriocin was a new natural nisin variant, termed nisin Q. Nisin Q and nisin(More)
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order(More)
We report the complete genome sequence of Lactococcus lactis IO-1 (= JCM7638). It is a nondairy lactic acid bacterium, produces nisin Z, ferments xylose, and produces predominantly L-lactic acid at high xylose concentrations. From ortholog analysis with other five L. lactis strains, IO-1 was identified as L. lactis subsp. lactis.
Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry.(More)
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced(More)
Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized(More)
Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report(More)
Lacticin Q is a pore-forming bacteriocin produced by Lactococcus lactis QU 5, and its antimicrobial activity is in the nanomolar range. Lacticin Q induced calcein leakage from negatively charged liposomes. However, no morphological changes in the liposomes were observed by light scattering. Concomitantly with the calcein leakage, lacticin Q was found to(More)