Learn More
Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report(More)
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new(More)
We determined the mode of action of nukacin ISK-1. It did not cause membrane potential dissipation or the efflux of ATP or K(+) ions from the cells of a sensitive bacterial strain; however, it blocked the membrane depolarization activity of nisin. Nukacin ISK-1-treated cells had single arrangements of cells without the formation of a complete septum. A(More)
Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the(More)
The antimicrobial mechanism of a lactococcal bacteriocin, lacticin Q, can be described by the toroidal pore model without any receptor. However, lacticin Q showed different degrees of activity (selective antimicrobial activity) against Gram-positive bacteria even among related species. The ability of lacticin Q to induce pore formation in liposomes composed(More)
23 The antimicrobial mechanism of a lactococcal bacteriocin, lacticin Q, can be 24 described by the toroidal pore model without any receptor. However, lacticin Q 25 showed different degrees of activity (selective antimicrobial activity) against 26 gram-positive bacteria even among related species. The ability of lacticin Q to induce 27 pore formation in(More)
Nukacin D13E (D13E) is a variant of type-A(II) lantibiotic nukacin ISK-1 produced by Staphylococcus warneri ISK-1. D13E exhibited a twofold higher specific antimicrobial activity than nukacin ISK-1 against a number of Gram-positive bacteria. We previously reported the heterologous production of D13E in Lactococcus lactis NZ9000 under the control of(More)
Effective utilization of cellulosic biomass as a feedstock for lactic acid production is still problematic due to high cost of saccharifying enzymes combined with feedback inhibition caused by final hydrolysis products, glucose and cellobiose. In this study we demonstrated that Enterococcus mundtii QU 25, a newly isolated lactic acid bacterium, is able to(More)
Optimization of L -(+)-lactic acid production from cellobiose, one of the main cellulase inhibitors during saccharifaying process, was studied. Fermentation runs pH-controlled at 7.0 provided the highest lactic acid produced (18.6 g/L) and maximum lactic acid productivity (2.1 g/L/h) which were increased by 376% and 346%, respectively in comparison to non(More)
  • 1