Learn More
Developing a system for the production of organic chemicals via CO2 reduction is an important area of research that has the potential to address global warming and fossil fuel consumption. In addition, CO2 reduction promotes carbon source recycling. Solar energy is the largest exploitable resource among renewable energy resources, providing more energy to(More)
Photoelectrochemical reduction of CO(2) to HCOO(-) (formate) over p-type InP/Ru complex polymer hybrid photocatalyst was highly enhanced by introducing an anchoring complex into the polymer. By functionally combining the hybrid photocatalyst with TiO(2) for water oxidation, selective photoreduction of CO(2) to HCOO(-) was achieved in aqueous media, in which(More)
Various metal-doped p-type CaFe2O4 photocathodes were prepared in an attempt to improve the low quantum efficiency for photoreaction. CuO and Au doping enhanced the photocurrent by expansion of the absorption wavelength region and plasmon resonance, respectively. X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) analysis showed that doping(More)
Photoelectrochemical reduction of CO(2) to HCOO(-) was successfully achieved by a p-type InP photocathode modified with an electropolymerized ruthenium complex in water. This technique decreased the required applied potential for CO(2) reduction by utilizing solar energy. The carbon and proton sources of HCOO(-) were identified by a tracer experiment to be(More)
We successfully developed a highly efficient electrode for CO2 reduction using a Ru-complex catalyst ([Ru]) supported on carbon paper coated with multi-walled carbon nanotubes (CPCNT/[Ru]). The CPCNT/[Ru] electrode promoted the CO2 reduction reaction in aqueous solution near the theoretical potential, and produced formate linearly with a current density of(More)
Highly selective photoelectrochemical CO(2) reduction (>80% selectivity) in water was successfully achieved by combining Cu(2)ZnSnS(4) (CZTS) with a metal-complex electrocatalyst. CZTS, a sulfide semiconductor that possesses a narrow band gap and consists of earth-abundant elements, is demonstrated to be a candidate photoabsorber for a CO(2) reduction(More)
Vertically aligned titanium dioxide nanotube (TNT) arrays codoped with nitrogen and 3d transition metals were successfully fabricated using anodization and nitridation processes. The codoping of N and Fe yielded the highest visible-light-induced photoelectrochemical water oxidation due to bandgap narrowing of impurity levels by N and Fe.
  • 1