Takehito Yoshida

Learn More
Ecological and evolutionary dynamics can occur on similar timescales. However, theoretical predictions of how rapid evolution can affect ecological dynamics are inconclusive and often depend on untested model assumptions. Here we report that rapid prey evolution in response to oscillating predator density affects predator-prey (rotifer-algal) cycles in(More)
Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled(More)
Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using(More)
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic(More)
In a recent study (Fussmann et al. 2005), we used an experimental rotifer–algal system to show that the functional response of the consumer depends on the resource but not on the consumer concentration. We concluded that resource dependence should be the norm in dynamical mathematical models. Jensen et al. (2007) published a Comment on our paper in which(More)
Conventional theories of population and community dynamics are based on a single currency such as number of individuals, biomass, carbon or energy. However, organisms are constructed of multiple elements and often require them (in particular carbon, phosphorus and nitrogen) in different ratios than provided by their resources; this mismatch may constrain(More)
Using rotifer-algal microcosms, we tracked rapid evolution resulting from temporally changing natural selection in ecological predator-prey dynamics. We previously demonstrated that predator-prey oscillations in rotifer-algal laboratory microcosms are qualitatively altered by the presence of genetic variation within the prey. In that study, changes in algal(More)
Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of(More)
ADV # 20 AN 05 E CES IN ECOLOGICAL RESEARCH VOL. 37 0065-250 lsevier Ltd. All rights reserved DOI: 10.1016/S0065-2504( 4/0 04) II. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 III. P redator and Prey in the Chemostat—A Simple Story? . . . . . . . . . . . . 224 IV. T esting Hypotheses of(More)
Macrozooplankton may affect algal and microbial plankton directly through grazing or predation and indirectly through nutrient regeneration. They may also affect potential prey positively by removing alternative predators. Here, we examined the effects of a cladoceran (Daphnia) and a calanoid copepod (Eodiaptomus) on algal and microbial plankton in a(More)