Learn More
To elucidate whether ischemia-reperfusion can cause delayed cell death in the cochlea, the effects of transient cochlear ischemia on hearing and on neuronal structures in the cochlea were studied in Mongolian gerbils. Ischemia was induced by bilaterally occluding the vertebral arteries for 5 minutes in gerbils, which lack posterior cerebral communicating(More)
Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient(More)
Recent studies using explant cultures have demonstrated that pharmacological inhibition of Notch signaling by gamma-secretase inhibitors generates supernumerary hair cells in embryonic or neonatal cochleae. The aim of this study was to examine the effects of such pharmacological inhibition on mature auditory epithelia in vivo. Normal adult guinea pig(More)
Immune-mediated inner ear disorder has been well established as a clinical entity; however, the innate immune system of the inner ear is a poorly understood area of research with high clinical and immunological importance. Although the presence of resident tissue macrophages in the inner ear has been suggested, there has been some controversy. In this(More)
The effects of PGD2 are extremely context dependent. It can have pro- or anti-inflammatory effects in clinically important pathological conditions. A greater mechanistic insight into the determinants of PGD2 activity during inflammation is thus required. In this study, we investigated the role of PGD2 in croton oil-induced dermatitis using transgenic (TG)(More)
In the auditory system, efforts to reduce degeneration of spiral ganglion neurons have the immediate objective of improving clinical benefits of cochlear implants, which are small devices designed to stimulate spiral ganglion neurons electronically. Recent studies have indicated several neurotrophins can enhance survival of spiral ganglion neurons. However,(More)
This study aimed to examine the possibility of restoration of spiral ganglion neurons, which transmit sound stimulation to the brain, by transplantation of fetal neural stem cells (NSCs) into the modiolus of cochleae. Fetal mouse NSCs expressing green fluorescence were injected into the modiolus of cisplatin-treated cochleae of mice. The temporal bones were(More)
This study examined the potential of induced pluripotent stem (iPS) cells for use as a source of transplants for the restoration of auditory spiral ganglion neurons. We monitored neurite outgrowth from iPS cell-derived neural progenitors toward cochlear hair cells ex vivo, and followed their survival and fates after transplantation into mouse cochleae in(More)
Reactive oxygen species (ROS) play a role in the degeneration of auditory hair cells because of aging, noise trauma, or ototoxic drugs. Hydrogenation is a fundamental reduction/de-oxidation reaction in living organisms. This study thus examined the potential of hydrogen to protect auditory hair cells from ROS-induced damage. To generate ROS, we applied(More)
Recent studies have indicated that embryonic stem cells (ESCs) can be a source for the replacement of spiral ganglion neurons (SGNs), auditory primary neurons, and neurite projections from ESC-derived neurons to auditory sensory epithelia. However, the potential of ESC-derived neurons for synapse formation with auditory hair cells (HCs) has not been(More)