Learn More
Chemokines are a family of peptides originally identified as the factors regulating the migration of leukocytes in inflammatory and immune responses. Recently, they have been shown to be produced in the central and peripheral nervous systems under various pathological conditions and act on neuronal and glial cells. In this study, we examined the production(More)
To elucidate whether ischemia-reperfusion can cause delayed cell death in the cochlea, the effects of transient cochlear ischemia on hearing and on neuronal structures in the cochlea were studied in Mongolian gerbils. Ischemia was induced by bilaterally occluding the vertebral arteries for 5 minutes in gerbils, which lack posterior cerebral communicating(More)
BACKGROUND AND PURPOSE As baclofen is active in patients with anxiety disorders, GABAB receptors have been implicated in the modulation of anxiety. To avoid the side effects of baclofen, allosteric enhancers of GABAB receptors have been studied to provide an alternative therapeutic avenue for modulation of GABAB receptors. The aim of this study was to(More)
Accumulating evidence suggests that neuroimmune interactions contribute to pathological pain. Transient receptor potential melastatin 2 (TRPM2) is a nonselective Ca²⁺-permeable cation channel that acts as a sensor for reactive oxygen species. TRPM2 is expressed abundantly in immune cells and is important in inflammatory processes. The results of the present(More)
Chronic use of morphine leads to physical and psychological dependence. The amygdala is known to be involved in the expression of emotion such as anxiety and fear, and several studies have shown that the central nucleus of the amygdala (CeA) is involved in morphine dependence. In the present study, we investigated the role of glutamate receptors within the(More)
Since a deep involvement of astrocytes, a kind of glial cells, in differentiation of the blood-brain barrier (BBB) has been suggested, we examined the relation of glial cell line-derived neurotrophic factor (GDNF) to the BBB. First, immunohistochemical examination of the cerebral cortex of rats revealed that glial cell line-derived neurotrophic factor(More)
BACKGROUND The glial glutamate transporter GLT-1 is abundantly expressed in astrocytes and is crucial for glutamate removal from the synaptic cleft. Decreases in glutamate uptake activity and expression of spinal glutamate transporters are reported in animal models of pathological pain. However, the lack of available specific inhibitors and/or activators(More)
Reactive astrogliosis, defined by abnormal morphology and excessive cell proliferation, is a characteristic response of astrocytes to CNS injuries, including intracerebral hemorrhage. Thrombin, a major blood-derived serine protease, leaks into the brain parenchyma upon blood-brain barrier disruption and can induce brain injury and astrogliosis. Transient(More)
The involvement of reactive oxygen species (ROS) in an augmented sensitivity to painful stimuli (hyperalgesia) during inflammation has been suggested, yet how and where ROS affect the pain signaling remain unknown. Here we report a novel role for the superoxide-generating NADPH oxidase in the development of hyperalgesia. In mice lacking Nox1 (Nox1(-/Y)), a(More)
Microglia are intrinsic immune cells in the brain. In response to neurodegenerative events, excessively activated microglia change their shapes and release various cytokines leading to the pathogenesis of central nervous system (CNS) disease. Because the intracellular mechanisms of this process are still unclear, we have evaluated the functional roles of(More)