Takatoshi Tominaga

Learn More
Volatile thiols such as 4-methyl-4-sulfanylpentan-2-one (4MSP) and 3-sulfanylhexan-1-ol (3SH) are aromatic molecules having an important organoleptic impact on white wines. These components are produced from inodorous nonvolatile cysteinylated precursors by Saccharomyces cerevisiae metabolic activity during alcoholic fermentation. Here we provide a new(More)
When Sauvignon blanc or Gros Manseng grape must was percolated through an immobilized gamma-glutamyltranspeptidase column, there was a significant increase in the concentration of S-3-(hexan-1-ol)-L-cysteine, the precursor of 3-mercaptohexan-1-ol, a compound that contributes to the varietal aroma of wines made from these grapes. Low- and high-resolution(More)
The chemical compound 2-furanmethanethiol (2FM), with a strong roast coffee aroma, has been identified in sweet white wines made from the Petit manseng grape variety, and in certain red Bordeaux wines (made from the Merlot, Cabernet franc, and Cabernet sauvignon grape varieties). This was done by extracting specific volatile thiols using(More)
The method presented for measuring the aromatic potential of Sauvignon blanc must is based on an assay of the S-cysteine conjugate precursors of three volatile thiols involved in the characteristic aroma of wines made from this grape variety: 4-mercapto-4-methylpentan-2-one, 4-mercapto-4-methylpentan-2-ol, and 3-mercaptohexan-1-ol. These compounds were(More)
The development of a method for assaying S-3-(hexan-1-ol)-L-cysteine, the cysteinylated precursor of 3-mercaptohexan-1-ol (P-3MH), in must has made it possible to study its impact on the aromatic potential of Merlot and Cabernet Sauvignon grape varieties used to produce rose wines in Bordeaux. The original feature of this method is the purification of very(More)
A rapid, easy method has been developed for isolating and quantifying 2-methyl-3-furanthiol (2M3F) in wines. Until now, it was not possible to quantify this highly odoriferous compound, with a smell reminiscent of cooked meat, in wine. The original aspect of this method is the specific release of volatile thiols using a cysteamine solution applied in(More)
The diastereoisomeric distribution of S-3-(hexan-1-ol)cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexan-1-ol (3SH) in Vitis vinifera grape juice, was determined by a new method. This procedure is based on the purification of P-3SH in a small volume of must (500 microL) by affinity chromatography, followed by the separation of chiral molecules(More)
The effect of Saccharomyces cerevisiae strains on the amount of 4-mercapto-4-methylpentan-2-one, a major varietal aroma of Sauvignon blanc wines, was demonstrated by previous research work. However, the influence of different alcoholic fermentation parameters on the levels of volatile thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol and(More)
The enantiomeric distribution of 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) in Vitis vinifera wines was determined by combining two techniques: specific purification of volatile thiols from the wines using p-hydroxymercuribenzoate and separation of the chiral molecules by gas-phase chromatography on a cyclodextrin capillary column. The R(More)
Furfurylthiol (FFT) is formed in white wines during alcoholic fermentation in the barrel from the furfural released by toasted staves. The quantity of furfural released into the must has a decisive effect on the quantity of FFT in the finished wine. Wines fermented in new barrels thus contain larger quantities of FFT than those fermented in used barrels.(More)