Takatoshi Hiroko

Learn More
Diploid yeast cells repeatedly polarize and bud from their poles, probably because of highly stable marks of unknown composition. Here, Rax2, a membrane protein, was shown to behave as such a mark. The Rax2 protein itself was inherited immutably at the cell cortex for multiple generations, and Rax2 was shown to have a half-life exceeding several(More)
Wnt signaling plays an important role in embryonic development and tumorigenesis. These biological effects are exerted by activation of the β-catenin/TCF transcription complex and consequent regulation of a set of downstream genes. TCF-binding elements have been found in the promoter regions of many TCF target genes and characterized by a highly conserved(More)
In Saccharomyces cerevisiae, cell type determines two distinct spatial budding patterns. Haploid cells exhibit an axial pattern, whereas diploid cells exhibit a bipolar pattern. Axl1, a member of the insulin-degrading enzyme (IDE) family, is the key morphological determinant for the haploid axial pattern. Here we identified a novel gene, RAX1, specifically(More)
In response to nitrogen limitation, diploid yeast strains of Saccharomyces cerevisiae undergo a dimorphic transition to a filamentous growth form known as pseudohyphal growth. This developmental change can be classified into two distinct growing forms: invasive pseudohyphal growth and superficial pseudohyphal growth. We identified a yeast gene, SFG1, whose(More)
Bud-site selection in yeast offers an attractive system for studying cell polarity and asymmetric division. Haploids divide in an axial pattern, whereas diploids divide in a bipolar pattern. AXL1 is expressed in haploids but not diploids, and ectopic expression of AXL1 in diploids converts their bipolar budding pattern to an axial pattern. How Axl1 acts as(More)
In the budding yeast, Saccharomyces cerevisiae, protein kinases Ste20p (p21(Cdc42p/Rac)-activated kinase), Ste11p [mitogen-activated protein kinase (MAPK) kinase kinase], Ste7p (MAPK kinase), Fus3p, and Kss1p (MAPKs) are utilized for haploid mating, invasive growth, and diploid filamentous growth. Members of the highly conserved Ste20p/p65(PAK) protein(More)
  • 1