Takasi Nisisako

Learn More
A method is given for generating droplets in a microchannel network. With oil as the continuous phase and water as the dispersed phase, pico/nanoliter-sized water droplets can be generated in a continuous phase flow at a -junction. The channel for the dispersed phase is 100 microm wide and 100 microm deep, whereas the channel for the continuous phase is 500(More)
We investigated the formation of a droplet from a single pore in a glass chip, which is a model system for droplet formation in membrane emulsification. Droplet formation was simulated with the lattice Boltzmann method, a method suitable for modeling on the mesoscale. We validated the lattice Boltzmann code with several benchmarks such as the flow profile(More)
In this study, we report the mass production of monodisperse emulsion droplets and particles using microfluidic large-scale integration on a chip. The production module comprises a glass microfluidic chip with planar microfabricated 16-256 droplet-formation units (DFUs) and a palm-sized stainless steel holder having several layers for supplying liquids into(More)
A microfluidic device having both hydrophobic and hydrophilic components is exploited for production of multiple-phase emulsions. For producing water-in-oil-in-water (W/O/W) dispersions, aqueous droplets ruptured at the upstream hydrophobic junction are enclosed within organic droplets formed at the downstream hydrophilic junction. Droplets produced at each(More)
This study describes a microfluidic platform with coaxial annular world-to-chip interfaces for high-throughput production of single and compound emulsion droplets, having controlled sizes and internal compositions. The production module consists of two distinct elements: a planar square chip on which many copies of a microfluidic droplet generator (MFDG)(More)
In this study, a simple capillary-based approach for producing biconcave polymeric microlenses with uniform size and shape from ternary emulsion droplets is presented. Monodisperse ternary emulsion droplets (0.6-4.0 nL) are produced which contain a photocurable segment of an acrylate monomer and two non-curable segments of silicone oil (SO) by using a(More)
Membrane permeability assays play an important role in assessing drug transport activities across biological membranes. However, in conventional parallel artificial membrane permeability assays (PAMPA), the membrane model used is dissimilar to biological membranes physically and chemically. Here, we describe a microfluidic passive permeability assay using(More)
This paper presents a new method for preparing micro droplets inside the liquid layer at a T-junction in a microchannel network. The relations between droplet size, flow speed, and channel size are studied. The droplet size is easily varied by changing the flow conditions in the microchannels. The size distribution of the resulting droplets is very narrow.
This work presents a technique for fabricating biconvex polymer microlenses using microfluidics, and then evaluates their tunable optical properties. A glass microfluidic channel was employed to rapidly mass-produce nanoliter-sized biphasic Janus droplets, which consist of a biconvex segment of a photocurable monomer and a concave-convex segment of a(More)
  • 1