Learn More
Mitochondrial oxidative damage is a basic mechanism of aging, and multiple studies demonstrate that this process is attenuated by calorie restriction (CR). However, the molecular mechanism that underlies the beneficial effect of CR on mitochondrial dysfunction is unclear. Here, we investigated in mice the mechanisms underlying CR-mediated protection against(More)
SIRT1, a class III histone deacetylase, is considered a key regulator of cell survival and apoptosis through its interaction with nuclear proteins. In this study, we have examined the likelihood and role of the interaction between SIRT1 and Smad7, which mediates transforming growth factor beta (TGFbeta)-induced apoptosis in renal glomerular mesangial cells.(More)
Metabolic syndrome has been reported to be associated with chronic kidney disease, but the mechanisms remain unclear. Although feeding of a high-fat diet (HFD) to C57BL/6 mice is reported to induce systemic metabolic abnormalities and subsequent renal injuries, such as albuminuria, similar to human metabolic syndrome, alterations in HFD-induced renal(More)
OBJECTIVE Genetic factors are believed to contribute to the development and progression of diabetic nephropathy. Recently, a genome-wide association study for diabetic nephropathy revealed four novel candidate loci in European American subjects with type 1 diabetes. In this study, we determined the association of the four loci with diabetic nephropathy in(More)
The improvement of salt-sensitive hypertension is a therapeutic target for various vascular diseases. Glucagon-like peptide 1 (GLP-1), an incretin peptide, has been reported to have natriuretic effect as well as blood glucose lowering effect, although its exact mechanism and clinical usefulness remain unclear. Here, we examined anti-hypertensive effect of(More)
As renal lipotoxicity can lead to chronic kidney disease (CKD), we examined the role of peroxisome proliferator-activated receptor (PPAR)-α, a positive regulator of renal lipolysis. Feeding mice a high-fat diet induced glomerular injury, and treating them with fenofibrate, a PPARα agonist, increased the expression of lipolytic enzymes and reduced lipid(More)
Metabolic syndrome is associated with increased risk of chronic kidney disease, and the renal injury in patients with metabolic syndrome may be a result of altered renal lipid metabolism. We fed wild-type or insulin-sensitive heterozygous peroxisome proliferator-activated receptor gamma-deficient (PPARgamma(+/-)) mice a high-fat diet for 16 weeks. In(More)
Obesity is an independent risk factor for renal dysfunction in patients with CKDs, including diabetic nephropathy, but the mechanism underlying this connection remains unclear. Autophagy is an intracellular degradation system that maintains intracellular homeostasis by removing damaged proteins and organelles, and autophagy insufficiency is associated with(More)
Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue(More)
Oxidative stress-induced apoptosis of renal glomerular cells is an important factor for the development of various kidney diseases. Identification of molecules that modulate this process could lead to the development of new strategies for preventing kidney diseases. In this study, we evaluated whether mammalian silent information regulator 2 (SIRT1), which(More)