Learn More
This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute(More)
1. Introduction In this work, a polarization-analyzing CMOS sensor based on image sensor architecture was proposed and demonstrated. The sensor has a feature of monolithically embedded polarizer. We designed a prototype sensor equipped with a polarization-analyzing pixel array based on the concept. Embedded polarizers with different angle were implemented(More)
We have performed in vivo electric stimulation experiments on rabbit retina to demonstrate feasibility of CMOS LSI-based multi-chip flexible neural stimulator for retinal prosthesis. We have developed new packaging structure with an improved flexibility and device control system which totally controls the LSI-based multi-chip stimulator, counter electrode,(More)
The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a(More)
We developed an implantable one-chip biofluoroimaging device (termed biomedical photonic LSI; BpLSI) which enabled real-time molecular imaging with conventional electrophysiology in vivo in deep brain areas. The multimodal LSI enabled long-term sequential imaging of the fluorescence emitted by proteolysis-linked fluorogenic substrate. Using the BpLSI, we(More)
A complementary metal-oxide semiconductor (CMOS)-based multichip flexible neural stimulator for retinal prostheses was developed. The multichip retinal stimulator is capable of simultaneous multisite stimulation. An on-chip stimulation generator was implemented on the "unit chip," which is the core device of the multichip retinal stimulator. The performance(More)
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing(More)