Takashi Tokuda

Learn More
A complementary metal-oxide semiconductor (CMOS)-based multichip flexible neural stimulator for retinal prostheses was developed. The multichip retinal stimulator is capable of simultaneous multisite stimulation. An on-chip stimulation generator was implemented on the "unit chip," which is the core device of the multichip retinal stimulator. The performance(More)
Measurement of brain activity in multiple areas simultaneously by minimally invasive methods contributes to the study of neuroscience and development of brain machine interfaces. However, this requires compact wearable instruments that do not inhibit natural movements. Application of optical potentiometry with voltage-sensitive fluorescent dye using an(More)
Techniques for fast, noninvasive measurement of neuronal excitability within a broad area will be of major importance for analyzing and understanding neuronal networks and animal behavior in neuroscience field. In this research, a novel implantable imaging system for fluorescence potentiometry was developed using a complementary metal-oxide semiconductor(More)
Inspired by biological information scheme, pulse frequency modulation (PFM) technique is robust for noise sources due to its digital encode of analog signals. In a viewpoint of image sensors, PFM is also useful for a wide dynamic range and has already been demonstrated over 60 dB. We have designed a pixel circuit of a CMOS image sensor using PFM for the(More)
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing(More)