Learn More
We consider the dynamics when traveling pulses encounter heterogeneities in a three-component reaction diffusion system of one-activator-two-inhibitor type, which typically arises as a qualitative model of a gas-discharge system. We focused on the case where one of the kinetic coefficients changes similar to a smoothed step function, which is basic for more(More)
Scattering of particlelike patterns in dissipative systems is studied, especially we focus on the issue how the input-output relation is controlled at a head-on collision in the one-dimensional(1D) space where traveling pulses interact strongly. It remains an open problem due to the large deformation of patterns at a colliding point. We found that a special(More)
What is the origin of rotational motion? An answer is presented through the study of the dynamics for spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular to peanut shape. Rotational(More)
We study the dynamics of head-on collisions of traveling pulses for a three-component reaction diffusion system. A variety of outputs with large deformation such as annihilation, repulsion, and fusion are observed after collision, however it remains open for a long time that what kind of mathematical structure controls the input-output relation at collision(More)
  • 1