Takashi Sumikama

Learn More
The cross sections for single-neutron removal from the very neutron-rich nucleus 31Ne on Pb and C targets have been measured at 230 MeV/nucleon using the RIBF facility at RIKEN. The deduced large Coulomb breakup cross section of 540(70) mb is indicative of a soft E1 excitation. Comparison with direct-breakup model calculations suggests that the valence(More)
The mechanism of the ion permeation is investigated for an anion-doped carbon nanotube, as a model of the K+ channel, by analyzing the free energy surface and the dynamics of the ion permeation through the model channel. It is found that the main rate-determining step is how an ion enters the channel. The entrance of the ion is mostly blocked by a water(More)
Crystallographic studies of channel proteins have provided insight into the molecular mechanisms of ion channels, even though these structures are obtained in the absence of the membrane and some structural portions have remained unsolved. Here we report the gating structure of the membrane-embedded KcsA potassium channel using atomic force microscopy(More)
In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In(More)
In the Perspectives series in the June 2010 issue (Bahar, 2010; Bucher and Rothlisberger, 2010; Dror et al., 2010; Roux, 2010; Silva and Rudy, 2010), a broad range of permeation events from femtoseconds to minutes in time scale and sub-angstrom to millimeter in space were discussed. A main message in the Perspectives was to explore each discipline to expand(More)
Neutron single particle energies have been measured in 23O using the 22O(d,p)23O*-->22O+n process. The energies of the resonant states have been deduced to be 4.00(2) MeV and 5.30(4) MeV. The first excited state can be assigned to the nu d3/2 single particle state from a comparison with shell model calculations. The measured 4.0 MeV energy difference(More)
Mechanism of ion permeation through an anion-doped carbon nanotube (ANT), a model of ion channel, is investigated. Using this model system, many trajectory calculations are performed to obtain the potential energy profile, in addition to the free energy profile, that enables to separate the energy and the entropic contributions, along the ion permeation. It(More)
Atomic nuclei are finite quantum systems composed of two distinct types of fermion--protons and neutrons. In a manner similar to that of electrons orbiting in an atom, protons and neutrons in a nucleus form shell structures. In the case of stable, naturally occurring nuclei, large energy gaps exist between shells that fill completely when the proton or(More)
N. Kobayashi, T. Nakamura, J. A. Tostevin, Y. Kondo, N. Aoi, H. Baba, S. Deguchi, J. Gibelin, M. Ishihara, Y. Kawada, T. Kubo, T. Motobayashi, T. Ohnishi, N. A. Orr, H. Otsu, H. Sakurai, Y. Satou, E. C. Simpson, T. Sumikama, H. Takeda, M. Takechi, S. Takeuchi, K. N. Tanaka, N. Tanaka, Y. Togano, and K. Yoneda Department of Physics, Tokyo Institute of(More)
The half-lives of 20 neutron-rich nuclei with Z=27-30 have been measured at the RIBF, including five new half-lives of (76)Co(21.7(-4.9)(+6.5) ms), (77)Co(13.0(-4.3)(+7.2) ms), (79)Ni(43.0(-7.5)(+8.6) ms), (80)Ni(23.9(-17.2)(+26.0) ms), and (81)Cu(73.2 ± 6.8 ms). In addition, the half-lives of (73-75)Co, (74-78)Ni, (78-80)Cu, and (80-82)Zn were determined(More)