Takashi Shiromizu

Learn More
Coexpression of two classes of folding accessory proteins, molecular chaperones and foldases, can be expected to improve the productivity of soluble and active recombinant proteins. In this study, horseradish peroxidase (HRP), which has four disulfide bonds, was selected as a model enzyme and overexpressed in Escherichia coli. The effects of coexpression of(More)
Protein phosphorylation is a key mechanism of cellular signaling pathways and aberrant phosphorylation has been implicated in a number of human diseases. Thus, approaches in phosphoproteomics can contribute to the identification of key biomarkers to assess disease pathogenesis and drug targets. Moreover, careful validation of large-scale phosphoproteome(More)
Keratin filaments form cytoskeletal networks in epithelial cells. Dynamic rearrangement of keratin filament networks is required for epithelial cells to perform cellular processes such as cell migration and polarization; however, the mechanism governing keratin filament rearrangement remains unclear. Here, we describe a novel mechanism of keratin(More)
Importin α1 is involved in nuclear import as a receptor for proteins with a classical nuclear localization signal (cNLS). Here, we report that importin α1 is localized to the cell surface in several cancer cell lines and detected in their cultured medium. We also found that exogenously added importin α1 is associated with the cell membrane via interaction(More)
The Chromosome-centric Human Proteome Project (C-HPP) aims to define all proteins encoded in each chromosome and especially to identify proteins that currently lack evidence by mass spectrometry. The C-HPP also prioritizes particular protein subsets such as membrane proteins, post-translational modifications, and low-abundance proteins. In this study, we(More)
The Chromosome-Centric Human Proteome Project (C-HPP) is an international effort for creating an annotated proteomic catalog for each chromosome. The first step of the C-HPP project is to find evidence of expression of all proteins encoded on each chromosome. C-HPP also prioritizes particular protein subsets, such as those with post-translational(More)
At the moment, there is no sensitive clinical test for detecting early-stage colorectal cancer (CRC). Target proteomics has enabled high-throughput verification of hundreds of biomarker candidate proteins. Using this technology, we verified 725 previously reported CRC biomarker candidate proteins that are functionally correlated with CRC in extracellular(More)
  • 1