Takashi Okura

Learn More
In this study, the internalization mechanism of basic fibroblast growth factor (bFGF) at the blood-brain barrier (BBB) was investigated using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4 cells) as an in vitro model of the BBB and the corresponding receptor was identified using immunohistochemical analysis. The(More)
(1) We investigated the distribution of morphine and morphine-6beta-glucuronide (M6G) in the brain and spinal cord after intracerebroventricular (i.c.v.) injection of each drug in rats. (2) The cerebrospinal fluid (CSF) concentration of M6G was 5-37 times greater than that of morphine 10, 60 and 120 min after the i.c.v. injection. The apparent elimination(More)
Morphine-6beta-glucuronide (M6G) is well known as a potent active metabolite in humans. To clarify concentration-antinociceptive effect relationships for morphine and M6G, we evaluated comparatively the pharmacokinetics and antinociceptive effects of morphine and M6G. The spinal CSF concentration and antinociception were simultaneously measured by using the(More)
The aim of this study was to investigate comparatively the role of spinal glutamate in the antinociceptive effect of morphine and morphine-6beta-glucuronide (M6G). The glutamate concentration in the spinal microdialysates and flinching behavior were simultaneously measured in conscious and freely moving rats after the intraplanter injection of formalin. The(More)
Knowledge of the molecular basis and transport function of the human blood–brain barrier (BBB) is important for not only understanding human cerebral physiology, but also development of new central nervous system (CNS)-acting drugs. However, few studies have been done using human brain capillary endothelial cells, because human brain materials are difficult(More)
The elimination of histamine, an excitatory neurotransmitter, from the brain/CSF across the blood-brain barrier and blood-CSF barrier (BCSFB) was investigated using Wistar rats, which were anesthetized with pentobarbital sodium. An in vivo intracerebral microinjection study suggested that there was only partial efflux of [(3) H]histamine from the rat brain(More)
  • 1