Learn More
Caveolae are plasma membrane specializations that have been implicated in signal transduction. Caveolin, a 21-24-kDa integral membrane protein, is a principal structural component of caveolae membranes in vivo. G protein alpha subunits are concentrated in purified preparations of caveolae membranes, and caveolin interacts directly with multiple G protein(More)
Ethanol stimulates the firing activity of midbrain dopamine (DA) neurons, leading to enhanced dopaminergic transmission in the mesolimbic system. This effect is thought to underlie the behavioral reinforcement of alcohol intake. Ethanol has been shown to directly enhance the intrinsic pacemaker activity of DA neurons, yet the cellular mechanism mediating(More)
We have identified a novel gene containing CAG repeats and mapped it to chromosome 14q32.1, the genetic locus for Machado-Joseph disease (MJD). In normal individuals the gene contains between 13 and 36 CAG repeats, whereas most of the clinically diagnosed patients and all of the affected members of a family with the clinical and pathological diagnosis of(More)
During early postnatal development, midbrain dopamine (DA) neurons display anomalous firing patterns and amphetamine response. Spontaneous miniature hyperpolarizations (SMHs) are observed in DA neurons during the same period but not in adults. These hyperpolarizations have been shown to be dependent on the release of Ca2+ from internal stores and the(More)
Caveolin, a 21-24-kDa integral membrane protein, is a principal component of caveolae membranes. We have suggested that caveolin functions as a scaffolding protein to organize and concentrate certain caveolin-interacting proteins within caveolae membranes. In this regard, caveolin co-purifies with a variety of lipid-modified signaling molecules, including(More)
A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that(More)
Caveolin, a 21- to 24-kDa integral membrane protein, is a principal component of caveolae membranes. Caveolin interacts directly with heterotrimeric guanine nucleotide binding proteins (G proteins) and can functionally regulate their activity. Here, an approximately 20-kDa caveolin-related protein, caveolin-2, was identified through microsequencing of(More)
Caveolae are flask-shaped plasma membrane specializations. A 22-kDa protein, caveolin, is a principal component of caveolar membranes in vivo. As recent evidence suggests that caveolae may participate in G protein-coupled signaling events, we have investigated the potential interaction of caveolin with heterotrimeric G proteins. Using cell fractionation(More)