Takashi Okamoto

Learn More
Caveolin, a 21-24-kDa integral membrane protein, is a principal component of caveolae membranes. We have suggested that caveolin functions as a scaffolding protein to organize and concentrate certain caveolin-interacting proteins within caveolae membranes. In this regard, caveolin co-purifies with a variety of lipid-modified signaling molecules, including(More)
We have identified a novel gene containing CAG repeats and mapped it to chromosome 14q32.1, the genetic locus for Machado-Joseph disease (MJD). In normal individuals the gene contains between 13 and 36 CAG repeats, whereas most of the clinically diagnosed patients and all of the affected members of a family with the clinical and pathological diagnosis of(More)
Caveolae are plasma membrane specializations that have been implicated in signal transduction. Caveolin, a 21-24-kDa integral membrane protein, is a principal structural component of caveolae membranes in vivo. G protein alpha subunits are concentrated in purified preparations of caveolae membranes, and caveolin interacts directly with multiple G protein(More)
A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that(More)
Oxidative stress may cause tissue injury through activation of the precursors of matrix metalloproteinase (proMMPs). In this study, we observed glutathione (GSH)-dependent proMMP activation induced by peroxynitrite, a potent oxidizing agent formed during inflammatory processes. Peroxynitrite strongly activated all three types of purified human proMMPs(More)
The most characteristic change in progressive dementia of Alzheimer's type is a tissue deposit of amyloid beta/A4 protein, which is derived from its precursor protein APP (ref.2). Structural alterations of APP are implicated in the pathogenesis of Alzheimer's disease, but it is not known how they cause the disease. Although APP has a receptor-like(More)
Ethanol stimulates the firing activity of midbrain dopamine (DA) neurons, leading to enhanced dopaminergic transmission in the mesolimbic system. This effect is thought to underlie the behavioral reinforcement of alcohol intake. Ethanol has been shown to directly enhance the intrinsic pacemaker activity of DA neurons, yet the cellular mechanism mediating(More)
Caveolae are microdomains of the plasma membrane that have been implicated in signal transduction. Caveolin, a 21-24-kDa integral membrane protein, is a principal component of the caveolae membrane. Recently, we and others have identified a family of caveolin-related proteins; caveolin has been retermed caveolin-1. Caveolin-3 is most closely related to(More)