Learn More
Costimulatory signals are required for activation of immune cells, but it is not known whether they contribute to other biological systems. The development and homeostasis of the skeletal system depend on the balance between bone formation and resorption. Receptor activator of NF-kappaB ligand (RANKL) regulates the differentiation of bone-resorbing cells,(More)
The development of axons and dendrites is controlled by small GTP-binding proteins of the Rho family, but the upstream signaling mechanisms responsible for such regulation remain unclear. We have now investigated the role of the transmembrane protein cluster of differentiation 47 (CD47) in this process with hippocampal neurons. CD47-deficient neurons(More)
Src family kinases (SFKs) are non-receptor-type protein tyrosine kinases that were originally identified as the products of proto-oncogenes and were subsequently implicated in the regulation of cell proliferation and differentiation in the developing mammalian brain. Recent studies using transgenic mouse models have demonstrated that SFKs that are highly(More)
Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1), also known as Signal-regulatory protein alpha (SIRPα) or SIRPA is a transmembrane protein that is predominantly expressed in neurons, dendritic cells, and macrophages. This study was conducted to investigate the role of SHPS-1 in the oxidative stress and brain damage induced(More)
Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic(More)
Polarized localization of membrane proteins to axons or dendrites is important for a variety of neuronal functions, including neurite outgrowth and synaptogenesis during neural development. Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) and its ligand cluster of differentiation 47 (CD47), both of which are members(More)
SH-PTP2 is a protein-tyrosine phosphatase with src homology-2 (SH2) domains and shown to be highly expressed in the rat brain. Light microscopic immunohistochemistry showed that specific immunoreactivity was widely distributed, most abundant in neurophil, weak in neuronal somata, and absent from white matter. By electron microscopic immunohistochemistry,(More)
The lifespan of circulating red blood cells (RBCs) produced in bone marrow is determined by their elimination through phagocytosis by splenic macrophages. The mechanism by which RBC elimination is regulated has remained unclear, however. The surface glycoprotein SHPS-1, a member of the immunoglobulin superfamily, is abundant in macrophages. We have now(More)
Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein alpha (SIRPalpha) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the(More)
The life span of intestinal epithelial cells (IECs) is short (3-5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of(More)