Learn More
FLOWERING LOCUS T (FT) is a conserved promoter of flowering that acts downstream of various regulatory pathways, including one that mediates photoperiodic induction through CONSTANS (CO), and is expressed in the vasculature of cotyledons and leaves. A bZIP transcription factor, FD, preferentially expressed in the shoot apex is required for FT to promote(More)
The Arabidopsis protein COP1, encoded by the constitutive photomorphogenic locus 1, is an essential regulatory molecule that plays a role in the repression of photomorphogenic development in darkness and in the ability of light-grown plants to respond to photoperiod, end-of-day far-red treatment, and ratio of red/far-red light. The COP1 protein contains(More)
Postembryonic development of plants depends on the activity of apical meristems established during embryogenesis. The shoot apical meristem (SAM) and the root apical meristem (RAM) have similar but distinct cellular organization. Arabidopsis FASCIATA1 (FAS1) and FAS2 genes maintain the cellular and functional organization of both SAM and RAM, and FAS gene(More)
Many organisms rely on a circadian clock system to adapt to daily and seasonal environmental changes. The mammalian circadian clock consists of a central clock in the suprachiasmatic nucleus that has tightly coupled neurons and synchronizes other clocks in peripheral tissues. Plants also have a circadian clock, but plant circadian clock function has long(More)
OBJECT This study was performed to evaluate the complications of invasive subdural grid monitoring during epilepsy surgery in children. METHODS The authors retrospectively reviewed the records of 35 consecutive children with intractable localization-related epilepsy who underwent invasive video electroencephalography (EEG) with subdural grid electrodes at(More)
Light is one of the most important environmental factors that determine the timing of a plant's transition from the vegetative to reproductive, or flowering, phase. Not only daylength but also the spectrum of light greatly affect flowering. The shade of nearby vegetation reduces the ratio of red to far-red light and can trigger shade avoidance responses,(More)
The late-flowering phenotype of dominant fwa mutants is caused by hypomethylation in the FWA locus leading to ectopic expression of a homeodomain leucine zipper (HD-ZIP) protein. However, little is known about whether FWA has any role in regulation of flowering and how ectopically expressed FWA delays flowering. Through analysis of FWA expression in(More)
The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative(More)
Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot(More)
Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current(More)