Learn More
An intriguing application of neuroimaging is directly measuring actual human brain activities during daily living. To this end, we investigated cortical activation patterns during apple peeling. We first conducted a pilot study to assess the activation pattern of the whole lateral cortical surface during apple peeling by multichannel near-infrared(More)
We investigate whether the functional near-infrared spectroscopic (fNIRS) signal includes a signal from the changing skin blood flow. During a locomotor task on a treadmill, changes in the hemodynamic response in the front-parietal area of healthy human subjects are simultaneously recorded using an fNIRS imaging system and a laser Doppler tissue blood flow(More)
Diffuse optical tomography (DOT) is an emerging technology for improving the spatial resolution and spatial specificity of conventional multi-channel near-infrared spectroscopy (NIRS) by the use of high-density measurements and an image reconstruction algorithm. We recently proposed a hierarchical Bayesian DOT algorithm that allows for accurate simultaneous(More)
Functional near-infrared spectroscopy (fNIRS) can non-invasively measure hemodynamic responses in the cerebral cortex with a portable apparatus. However, the observation signal in fNIRS measurements is contaminated by the artifact signal from the hemodynamic response in the scalp. In this paper, we propose a method to separate the signals from the cortex(More)
The purpose of this study is to compare diffuse axonal injury (DAI) patients with healthy controls by using near infrared spectroscopy (NIRS). The Wisconsin Card Sorting Test Keio Version (KWCST), a standard task paradigm to detect human frontal lobe dysfunction was set as a method. The result of the examination showed that compared with DAI patients, wider(More)
  • 1