Learn More
In our companion paper, the physiological functions of pancreatic β cells were analyzed with a new β-cell model by time-based integration of a set of differential equations that describe individual reaction steps or functional components based on experimental studies. In this study, we calculate steady-state solutions of these differential equations to(More)
The action potential, once triggered in ventricular or atrial myocytes, automatically proceeds on its time course or is generated spontaneously in sinoatrial node pacemaker cells. It is induced by complex interactions among such cellular components as ion channels, transporters, intracellular ion concentrations, and signaling molecules. We have developed(More)
Models written in description languages such as CellML are becoming a popular solution to the handling of complex cellular physiological models in biological function simulations. However, in order to fully simulate a model, boundary conditions and ordinary differential equation (ODE) solving schemes have to be combined with it. Though boundary conditions(More)
In this paper, we propose a method for reducing the computational cost of strong coupling for multiscale cardiovascular simulation models. In such a model, individual model modules of myocardial cell, left ventricular structural dynamics, and circulatory hemodynamics are coupled. The strong coupling method enables stable and accurate calculation, but(More)
Mathematical cell models are effective tools to understand cellular physiological functions precisely. For detailed analysis of model dynamics in order to investigate how much each component affects cellular behaviour, mathematical approaches are essential. This article presents a numerical analysis technique, which is applicable to any complicated cell(More)
Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate(More)
  • 1