Takao Komatsu

Learn More
Given a set of positive integers A = {a 1 ,. .. , a n }, we study the number p A (t) of nonnegative integer solutions (m 1 ,. .. , m n) to n j=1 m j a j = t. We derive an explicit formula for the polynomial part of p A. Let A = {a 1 ,. .. , a n } be a set of positive integers with gcd(a 1 ,. .. , a n) = 1. The classical Frobenius problem asks for the(More)
For any given real number, its corresponding continued fraction is unique. However, given an arbitrary continued fraction, there has been no general way to identify its corresponding real number. In this paper we shall show a general algorithm from continued fractions to real numbers via infinite sums representations. Using this algorithm, we obtain some(More)
  • 1