Learn More
Autophagy is originally named as a process of protein recycling. It begins with sequestering cytoplasmic organelles in a membrane vacuole called autophagosome. Autophagosomes then fuse with lysosomes, where the materials inside are degraded and recycled. To date, however, little is known about the role of autophagy in cancer therapy. In this study, we(More)
The mammalian target of rapamycin (mTOR) is a downstream effector of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and a central modulator of cell proliferation in malignant gliomas. Therefore, the targeting of mTOR signaling is considered a promising therapy for malignant gliomas. However, the mechanisms underlying the(More)
The sphingolipid ceramide has been recognized as an important second messenger implicated in regulating diverse signaling pathways especially for apoptosis. Very little is known, however, about the molecular mechanisms underlying nonapoptotic cell death induced by ceramide. In the present study, we first demonstrate that ceramide induces nonapoptotic cell(More)
Recent clinical data shows that arsenic trioxide (As(2)O(3)) causes remission in patients with acute promyelocytic leukemia and multiple myeloma without severe side effects. Laboratory data suggest that As(2)O(3) induces apoptosis or cell differentiation of hematopoietic or solid tumor cells. To date, there has been no study on the effects of As(2)O(3) on(More)
Arsenic trioxide (As(2)O(3)) has shown considerable efficacy in treating hematological malignancies with induction of programmed cell death (PCD) type I, apoptosis. However, the mechanisms underlying the antitumor effect of As(2)O(3) on solid tumors are poorly defined. Previously, we reported that As(2)O(3) induced autophagic cell death (PCD type II) but(More)
We established granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent murine microglial clones and investigated the immune properties of four individual clones. All four clones expressed MHC class I and CD54 (ICAM-1) at similar levels. The 5-2, Ra2, and 6-3 clones expressed CD80 (B7-1), CD86 (B7-2), and MHC class II at low, medium, and high(More)
Autophagy is a process in which subcellular membranes undergo dynamic morphological changes that lead to the degradation of cellular proteins and cytoplasmic organelles. This process is an important cellular response to stress or starvation. Many studies have shed light on the importance of autophagy in cancer, but it is still unclear whether autophagy(More)
Autophagy is a novel response of cancer cells to ionizing radiation (IR) or chemotherapy, but its significance or mechanism remains largely elusive. Autophagy is characterized with the prominent formation of autophagic vacuoles in the cytoplasm. It is a protein degradation system that involves autophagic/lysosomal compartment. The process begins with(More)
OBJECT Temozolomide (TMZ) is a DNA alkylating agent currently used as adjuvant treatment for anaplastic astrocytomas. Its use in managing glioblastoma multiforme has been halted because of the lack of therapeutic effects due to cell resistance. Note that O6-alkylguanine-DNA alkyltranferase (AGT) is a DNA repair enzyme that limits the efficacy of TMZ. In(More)
OBJECT Ionizing radiation is the gold-standard adjuvant treatment for glioblastoma multiforme (GBM), the most aggressive primary brain tumor. The mechanisms underlying neoplastic glial cell growth inhibition after administration of ionizing radiation, however, remain largely unknown. In this report, the authors characterize the response of GBM cells to(More)