Learn More
Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for(More)
In this work we report a novel method to efficiently induce a murine model of Graves' hyperthyroidism. Inbred mice of different strains were immunized by i.m. injection with adenovirus expressing thyrotropin receptor (TSHR) or beta-galactosidase (1 x 10(11) particles/mouse, three times at 3-wk intervals) and followed up to 8 wk after the third immunization.(More)
To develop nonviral gene vectors that are sufficient for clinical application, it is necessary to understand why and to what extent nonviral vectors are inferior to viral vectors, which in general show a more efficient transfection activity. This study describes a systematic and quantitative comparison of the cellular uptake and subsequent intracellular(More)
Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model(More)
BACKGROUND PEGylation of adenovirus vectors (Ads) is an attractive strategy in gene therapy. Although many types of PEGylated Ad (PEG-Ads), which exhibit antibody evasion activity and long plasma half-life, have been developed, their entry into cells has been prevented by steric hindrance by polyethylene glycol (PEG) chains. Likewise, sufficient gene(More)
Coxsackievirus and adenovirus receptor (CAR), alphav integrins, and heparan sulfate glycosaminoglycans (HSGs) are the tropism determinants of adenoviral (Ad) vectors in vivo. For the development of a targeted Ad vector, its broad tropism needs to be blocked (or reduced). We have previously developed Ad vectors with ablation of CAR, alphav integrin, and HSG(More)
Tumor necrosis factor-alpha (TNF) induces inflammatory response predominantly through the TNF receptor-1 (TNFR1). Thus, blocking the binding of TNF to TNFR1 is an important strategy for the treatment of many inflammatory diseases, such as hepatitis and rheumatoid arthritis. In this study, we identified a TNFR1-selective antagonistic mutant TNF from a phage(More)
In a conventional adenovirus (Ad) vector production method using 293 cells, homologous recombination between Ad vector DNA and 293 cell-derived Ad E1 DNA occurs with low efficiency, resulting in the generation of replication-competent adenovirus (RCA). RCA can induce the spread of replication-incompetent Ad vectors, leading to unexpected tissue damage. In(More)
Membrane fusion has many potential applications in biotechnology. Here we show that antibody-targeted cell fusion can be achieved by engineering a fusogenic viral membrane glycoprotein complex. Three different single-chain antibodies were displayed at the extracellular C terminus of the measles hemagglutinin (H) protein, and combinations of point mutations(More)
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance(More)