Takao Arimori

Learn More
The human NUDT5 protein catalyzes the hydrolysis of 8-hydroxy-dGDP. To examine its substrate specificity, four oxidized deoxyribonucleotides (2-hydroxy-dADP, 8-hydroxy-dADP, 5-formyl-dUDP, and 5-hydroxy-dCDP) were incubated with the NUDT5 protein. Interestingly, all of the nucleotides, except for 5-hydroxy-dCDP, were hydrolyzed with various efficiencies.(More)
Human NUDT5 (hNUDT5) hydrolyzes various modified nucleoside diphosphates including 8-oxo-dGDP, 8-oxo-dADP and ADP-ribose (ADPR). However, the structural basis of the broad substrate specificity remains unknown. Here, we report the crystal structures of hNUDT5 complexed with 8-oxo-dGDP and 8-oxo-dADP. These structures reveal an unusually different(More)
Amyloid fibril formation is associated with protein misfolding disorders, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Familial amyloid polyneuropathy (FAP) is a hereditary disease caused by a point mutation of the human plasma protein, transthyretin (TTR), which binds and transports thyroxine (T(4)). TTR(More)
Chitinase C from Ralstonia sp. A-471 (Ra-ChiC) has a catalytic domain sequence similar to goose-type (G-type) lysozymes and, unlike other chitinases, belongs to glycohydrolase (GH) family 23. Using NMR spectroscopy, however, Ra-ChiC was found to interact only with the chitin dimer but not with the peptidoglycan fragment. Here we report the crystal(More)
The human MutT homolog 1 (hMTH1, human NUDT1) hydrolyzes oxidatively damaged nucleoside triphosphates and is the main enzyme responsible for nucleotide sanitization. hMTH1 recently has received attention as an anticancer target because hMTH1 blockade leads to accumulation of oxidized nucleotides in the cell, resulting in mutations and death of cancer cells.(More)
The saccharification process is essential for bioethanol production from woody biomass including celluloses. Cold-adapted cellulase, which has sufficient activity at low temperature (<293 K), is capable of reducing heating costs during the saccharification process and is suitable for simultaneous saccharification and fermentation. Endo-1,4-β-glucanase from(More)
Chitinase from the moderately thermophilic bacterium Ralstonia sp. A-471 (Ra-ChiC) is divided into two domains: a chitin-binding domain (residues 36-80) and a catalytic domain (residues 103-252). Although the catalytic domain of Ra-ChiC has homology to goose-type lysozyme, Ra-ChiC does not show lysozyme activity but does show chitinase activity. The(More)
  • 1