Learn More
Endocytic proteins such as epsin, AP180, and Hip1R (Sla2p) share a conserved modular region termed the epsin NH2-terminal homology (ENTH) domain, which plays a crucial role in clathrin-mediated endocytosis through an unknown target. Here, we demonstrate a strong affinity of the ENTH domain for phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2]. With(More)
The B3 DNA binding domain is shared amongst various plant-specific transcription factors, including factors involved in auxin-regulated and abscisic acid-regulated transcription. Herein, we report the NMR solution structure of the B3 domain of the Arabidopsis thaliana cold-responsive transcription factor RAV1. The structure consists of a seven-stranded open(More)
The nuclear pore complex mediates the transport of macromolecules across the nuclear envelope (NE). The vertebrate nuclear pore protein Nup35, the ortholog of Saccharomyces cerevisiae Nup53p, is suggested to interact with the NE membrane and to be required for nuclear morphology. The highly conserved region between vertebrate Nup35 and yeast Nup53p is(More)
We developed an effective strategy to restrict the amino acid usage in a relatively large protein to a reduced set with conservation of its in vivo function. The 213-residue Escherichia coli orotate phosphoribosyltransferase was subjected to 22 cycles of segment-wise combinatorial mutagenesis followed by 6 cycles of site-directed random mutagenesis, both(More)
The crystal structure of a class I aminoacyl-transfer RNA synthetase, glutamyl-tRNA synthetase (GluRS) from Thermus thermophilus, was solved and refined at 2.5 A resolution. The amino-terminal half of GluRS shows a geometrical similarity with that of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) of the same subclass in class I, comprising the class(More)
SQUAMOSA promoter binding proteins (SBPs) form a major family of plant-specific transcription factors related to flower development. Although SBPs are heterogeneous in primary structure, they share a highly conserved DNA-binding domain (DBD) that has been suggested to be zinc binding. Here we report the NMR solution structures of DBDs of two SBPs of(More)
Two major structural genomics projects exist in Japan. The oldest, the RIKEN Structural Genomics Initiative, has two major goals: to determine bacterial, mammalian, and plant protein structures by X-ray crystallography and NMR spectroscopy and to perform functional analyses with the target proteins. The newest, the structural genomics project at the(More)
The WRKY proteins comprise a major family of transcription factors that are essential in pathogen and salicylic acid responses of higher plants as well as a variety of plant-specific reactions. They share a DNA binding domain, designated as the WRKY domain, which contains an invariant WRKYGQK sequence and a CX4-5CX22-23HXH zinc binding motif. Herein, we(More)
The families of the plant-specific transcription factors (TFs) are defined by their characteristic DNA-binding domains (DBDs), such as AP2/ERF, B3, NAC, SBP, and WRKY. Recently, three-dimensional structures of the DBDs, including those in complexes with DNA, were determined by NMR spectroscopy and X-ray crystallography. In this review we summarize the(More)
BRD4, which is a member of the BET (bromodomains and extraterminal) protein family, interacts preferentially with acetylated chromatin and possesses multiple cellular functions in meiosis, embryonic development, the cell cycle, and transcription. BRD4 and its family members contain two bromodomains known to bind acetylated lysine, and a conserved ET domain(More)