Learn More
BACKGROUND The green-fluorescent protein (GFP) of the jellyfish Aequorea victoria has recently been used as a universal reporter in a broad range of heterologous living cells and organisms. Although successful in some plant transient expression assays based on strong promoters or high copy number viral vectors, further improvement of expression efficiency(More)
Cell lineages during ascidian embryogenesis are invariant. In a previous study, the developmental fate of each blastomere during embryogenesis of the ascidian Halocynthia roretzi was analyzed in detail by intracellular injection of a tracer molecule, horseradish peroxidase (Nishida, H., Dev. Biol. 121, 526-541, 1987). In the present study, the developmental(More)
Bacterial flagella contain a specialized secretion apparatus that functions to deliver the protein subunits that form the filament and other structures to outside the membrane. This apparatus is related to the injectisome used by many gram-negative pathogens and symbionts to transfer effector proteins into host cells; in both systems this export mechanism(More)
The rod component of the bacterial flagellum polymerizes from the inner membrane across the periplasmic space and stops at a length of 25 nm at the outer membrane. Bushing structures, the P- and L-rings, polymerize around the distal rod and form a pore in the outer membrane. The flagellar hook structure is then added to the distal rod growing outside the(More)
Cell lineages during ascidian embryogenesis are invariant. Developmental fates of larval mesodermal cells after metamorphosis are also invariant with regard to cell type of descendants. The present study traced developmental fates of larval endodermal cells after metamorphosis in Halocynthia roretzi by labeling each endodermal precursor blastomere of larval(More)
Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface, including suppression of IL-8 production by epithelial cells. NF-kB is a(More)
This paper presents a novel nano-injection method by nanoprobe insertion based on environmental-scanning electron microscope (E-SEM) under hybrid microscope. The hybrid microscope is designed to combine the optical microscope (OM) and E-SEM to realize biological specimen analysis by optical imaging including fluorescent imaging, and nano-scale manipulation(More)
Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput(More)
Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface, including suppression of IL-8 production by epithelial cells. NF-κB is a(More)
A novel nanotool exchanger system is proposed based on Environmental Scanning Electron Microscope (E-SEM) nanorobotic manipulation system. We proposed to use the E-SEM nanomanipulation system for the analysis of biological specimen using various “nanotools” to realize flexible and complex nano-scale stiffness measurement, adhesion force(More)