Learn More
Recent studies demonstrated that stromal cells isolated from adult bone marrow have the competence of differentiating into neuronal cells in vitro and in vivo. However, the capacity of marrow stromal cells or mesenchymal stem cells (MSCs) to differentiate into diverse neuronal cell populations and the identity of molecular factors that confer marrow stromal(More)
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca(2+) channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain(More)
We have investigated whether tea catechins (EC, ECg, EGC, EGCg) have any inhibitory effects on angiogenesis and which step they affect during the process. The effects of catechins were tested on in vitro models of angiogenesis, namely, growth, migration and tube formation of human umbilical vein endothelial cells. All four catechins inhibited angiogenesis(More)
A novel bone-resorbing factor was cloned using an expression cloning technique, which involved a Xenopus oocyte expression system and an assay for osteoclast formation. A candidate clone was isolated from a BW5147 mouse T-lymphoma cell cDNA library. Sequencing analysis identified the factor as gamma-glutamyltranspeptidase (GGT), which is an enzyme involved(More)
Wnt/β-catenin signaling promotes neural differentiation by activation of the neuron-specific transcription factors, Neurogenin1 (Ngn1), NeuroD, and Brn3a, in the nervous system. As neurons in cranial sensory ganglia and dorsal root ganglia transiently express Ngn1, NeuroD, and Brn3a during embryonic development, we hypothesized that Wnt proteins could(More)
VEGF receptor 1 (VEGFR-1/Flt-1) is a high-affinity tyrosine kinase (TK) receptor for VEGF and regulates angiogenesis as well as monocyte/macrophage functions. We previously showed that the osteoclast deficiency in osteopetrotic Csf1op/Csf1op (op/op) mice is gradually restored in an endogenous, VEGF-dependent manner. However, the molecular basis of the(More)
OBJECTIVES/HYPOTHESIS Stem cell replacement therapy has the potential to treat or cure an array of degenerative neurologic disorders, including sensorineural deafness. However, little is known about the potential for marrow-derived stem cells (MSCs) to take on properties of spiral ganglion neurons. The main purpose of this prospective animal study was to(More)
BACKGROUND The use of induced pluripotent stem cells (iPSCs) for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly(More)
Organs develop through many tissue interactions during embryogenesis, involving numerous signaling cascades and gene products. One of these signaling molecules is retinoic acid (RA), an active vitamin A derivative, which in mammalian embryos is synthesized from maternal retinol by two oxidative reactions involving alcohol/retinol dehydrogenases (ADH/RDHs)(More)
OBJECTIVE The loss of spiral ganglion neurons (SGNs) is one of the major causes of profound sensorineural hearing loss (SNHL). Stem cell replacement therapy, which is still in its infancy, has the potential to treat or cure those who suffer from an array of illnesses and degenerative neurologic disorders, including sensorineural deafness (SNHL). Little is(More)