Takakazu Sasaguri

Learn More
D-myo-inositol-1,4,5-trisphosphate (InsP3) is a putative intracellular second messenger for the mobilization of Ca2+ from intracellular stores, in particular, the endoplasmic reticulum. Specific binding sites on the endoplasmic reticulum may participate in the InsP3-induced release of Ca2+ from the Ca2+ pool. To examine the specific binding sites on the(More)
Inositol 1,4,5-trisphosphate (InsP3) releases Ca2+ from the non-mitochondrial Ca2+ store site of various types of cells. To study the mechanisms of the Ca2+ release from the store site, the effect of InsP3 on the passive Ca2+ release and influx, and the active Ca2+ uptake in the presence of oxalate, was examined using saponin-treated guinea pig peritoneal(More)
We examined the effects of cyclophosphamide (CP)-induced cystitis on the expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus (PVN) and the serum levels of adrenocorticotropic hormone (ACTH) using in situ hybridization histochemistry and radioimmunoassay. In addition, the expression of AVP heteronuclear (hn) RNA and(More)
1. K+ and scorpion toxin stimulate formation of inositol phosphates in guinea-pig ileum longitudinal smooth muscle slices. The response to these two agents is not additive. 2. The response to K+ is inhibited partially by nifedipine and partially by omega-conotoxin. When given together the effect of these two Ca2+ channel blockers is additive and the(More)
1. Formation of inositol phosphates (InsPs) was measured in cross-chopped slices or dispersed cells, isolated by collagenase treatment, of guinea-pig ileum longitudinal smooth muscle pre-labelled with [3H]inositol. 2. Elevation of the extracellular K+ concentration by equimolar replacement of Na+ induced accumulation of InsPs in the dispersed cells and in(More)
  • 1